精英家教网 > 初中数学 > 题目详情

已知:二次函数y=

1.求证:此二次函数与x轴有交点;

2.若m-1=0,求证方程有一个实数根为1;

3.在(2)的条件下,设方程的另一根为a,当x=2时,关于n 的函数的图象交于点A、B(点A在点B的左侧),平行于y轴的直线L与的图象分别交于点C、D,若CD=6,求点C、D的坐标.

 

【答案】

 

1.证明:令,则有

△=   -----------------------------------------------------------1分

∴△≥0                          -----------------------------------------------2分

∴二次函数y=与x轴有交点 

2.解:解法一:由,方程可化为

    

解得:        -------------------------------------------------------------------3分

∴方程有一个实数根为1  ----------------------------------4分

 

解法二:由,方程可化为

    

当x=1时,方程左边=1+(n-2)+1-n=0

方程右边=0

∴左边=右边                      -----------------------------------------------------------3分

∴方程有一个实数根为1     -------------------4分

3.解:方程的根是:

   ∴

=2时,            ----------------------------------5分

设点C()则点D(

∵CD=6 ,  ∴

                  -----------------------------------------------------------6分

∴C、D两点的坐标分别为C(3,4),D(3,-2)或C(-1,0),D(-1,-6)------7分

【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:二次函数的表达式为y=2x2+4x-1.
(1)设这个函数图象的顶点坐标为P,与y轴的交点为A,求P、A两点的坐标;
(2)将二次函数的图象向上平移1个单位,设平移后的图象与x轴的交点为B、C(其中点B在点C的左侧),求B、C两点的坐标及tan∠APB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(-2,0),点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OC<OB)是方程x2-10x+24=0的两个根.
(1)求B、C两点的坐标;
(2)求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2-2(m-1)x-1-m的图象与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,且满足
1
AO
-
1
OB
=
2
CO

(1)求这个二次函数的解析式;
(2)是否存在着直线y=kx+b与抛物线交于点P、Q,使y轴平分△CPQ的面积?若存在,求出k、b应满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴精英家教网交于点C,点D(-2,-3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值为
3
3

(2)求出这个二次函数的解析式;
(3)当0<x<3时,则y的取值范围为
-1≤y<3
-1≤y<3

查看答案和解析>>

同步练习册答案