精英家教网 > 初中数学 > 题目详情
请你说明(2的区别.

 

答案:
解析:

在()2中,被开方数a是一个非负数.

它表示的意义是正数a的算术平方根的平方.

即(2a(a0)

中,被开方数a2中的a可取任何数.

它表示的意义是:a2的算术平方根.

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•开平区一模)在Rt△ABC中,∠ACB=90°,AC=4cm,BC=8cm,以点P为圆心,以3cm长为半径的圆在直线BC上滑动.
(1)如图,连接PA,若PA=PB时,请你判断⊙P与直线AC的位置关系,并说明理由;
(2)当⊙P与直线AB的两个交点和圆心P为顶点的三角形是正三角形时,求PC的长;
(3)设PC=x,请你直接写出⊙P与直线AB相交时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•金平区模拟)如图1,在Rt△OAB中,∠AOB=90°,OA=OB=2
5
,点C、点D分别在OA、OB上,OC=OD=2.如图2,Rt△OAB绕点O顺时针旋转角θ(0°<θ<90°),得到△OMN.连接DN,若ND⊥OD,ON与CD交于点E.
(1)求tanθ的值;
(2)求DE的长;
(3)延长DC交MN于点F,连接OF,请你确定线段OF与线段MN的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•汉沽区一模)如图,一次函数y=kx+b的图象与反比例函数y=
mx
的图象交于A(2,1)、B(-1,n)两点.
(1)求n的值;
(2)一次函数的图象与x轴交于点C,与y轴交于点D,请你说明△OCD是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源:2009年北京市大兴区中考数学二模试卷(解析版) 题型:解答题

(2009•大兴区二模)我们知道:将一条线段AB分割成大小两条线段AC、CB,若小线段CB与大线段AC的长度之比等于大线段AC与线段AB的长度之比,即.这种分割称为黄金分割,点C叫做线段AB的黄金分割点.类似地我们可以定义,顶角为36°的等腰三角形叫黄金三角形,其底与腰之比为黄金数,底角平分线与腰的交点为腰的黄金分割点.
(1)如图1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分线CD交腰AB于点D,请你说明D为腰AB的黄金分割点的理由.
(2)若腰和上底相等,对角线和下底相等的等腰梯形叫作黄金梯形,其对角线的交点为对角线的黄金分割点.如图2,AD‖BC,AB=AD=DC,AC=BD=BC,试说明O为AC的黄金分割点.
(3)如图3,在Rt△ABC中,∠ACB=90°,CD为斜边AB上的高,∠A、∠B、∠ACB的对边分别为a、b、c.若D是AB的黄金分割点,那么a、b、c之间的数量关系是什么并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2005年福建省泉州市南安市初中学业质量检查数学试卷(解析版) 题型:解答题

(2009•盐都区二模)南泉汽车租赁公司共有30辆出租汽车,其中甲型汽车20辆,乙型汽车10辆.现将这30辆汽车租赁给A,B两地的旅游公司,其中20辆派往A地,10辆派往B地,两地旅游公司与汽车租赁公司商定每天价格如下表:
  每辆甲型车租金(元/天)每辆乙型车租金(元/天) 
 A地 1000 800
 B地 900 600
(1)设派往A地的乙型汽车x辆,租赁公司这30辆汽车一天共获得的租金为y(元),求y与x之间的函数解析式,并写出自变量x的取值范围;
(2)若要使租赁公司这30辆汽车一天所获得的租金总额不低于26800元,请你说明有多少种分派方案,并将各种方案设计出来;
(3)如果要使这30辆汽车每天获得的租金最多,请你为租赁公司提出合理的分派方案.

查看答案和解析>>

同步练习册答案