精英家教网 > 初中数学 > 题目详情

某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技产品,并投入资金1500万元进行批量生产,已知生产每件产品的成本为40元,在销售过程中,发现当销价定为100元/件时,年销量为20万件,销售单价每增加10元,年销量将减少1万件,设销售单价为x元,年销售量为y(万件)、年获利(年获利=年销售额-成本-投资)为z(万元)

(1)

试写出y与x之间的函数关系式?(不写x的取值范围)

(2)

试写出z与x之间的函数关系式?(不写x的取值范围)

(3)

计算销售单价为160元时的获利,并说明同样的年获利,销售单价还可以定为多少元?相应的年销售量定为多少万件?

答案:
解析:

(1)

  依据题意得,当销售单价定为x元时,年销售量减少(x-100)万件.

  ∴y=20-(x-100)=-x+30

  即y与x之间的函数关系式为y=-x+30

(2)

  根据题意得z=(x-40)-500-1500=-x2+34x-3200

  ∴z与x之间的函数关系式为:z=-x2+34x-3200

(3)

  ∵当x取160时

  z=-×1602+34×160-3200=-320

  ∴-320=-x2+34x-3200

  整理得x2-340x+28800=0

  由韦达定理得x1+160=340

  ∴x1=180(元)

  ∴同样的年获利,销售单价还可以定180元.

  若x=160时,y=-x+30=14(万件)

  当x=180时,y=-x+30=12(万件)

  即相应的年销量分别为14万件和12万件.

  点评:本题取材于生产实践,富有时代特色.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代品,并投入资金1500万元进行批量生产.已知生产每件产品还需再投入40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利为z(万元).
(1)写出y与x及z与x的函数关系式;
(2)公司计划:在第一年按获利最大确定销售单价,进行销售;第二年年获利不低于1130万元,借助函数的说明,第二年的销售单价(元)应确定在什么范围内?

查看答案和解析>>

科目:初中数学 来源: 题型:

某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,现在投入资金1500万元购进生产线进行批量生产,已知生产每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,一年的销售量为20万件;销售单价每增加10元,年销售量就减少1万件.公司同时规定:该产品售价不得低于100元/件且不得超过180元/件.设销售单价为x(元),年销售量为y(万件),年盈利(年获利=处销售额-生产成本-投资)为w(万元).
(1)y与x的函数关系式并直接写出自变量x的取值范围;
(2)请说明第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元,若能,求出第二年的产品售价;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•郑州模拟)目前,“低碳”已成为保护地球环境的热门话题,某高科技发展公司投资500万元,成功研制出一种市场需求量较大的低碳高科技产品,再投入资金1500万元作为固定投资.已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利为z(万元).(年获利=年销售额-生产成本-投资),
(1)试写出z与x之间的函数关系式.
(2)请通过计算说明到第一年年底,当z取最大值时,销销售单价x应定为多少?此时公司是盈利了还是亏损了?
(3)若该公司计划到第二年年底获利不低于1130万元,请借助函数的大致图象说明第二年的销售单价x(元)应确定在什么范围?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省苏州市张家港市九年级(上)期中数学试卷(解析版) 题型:解答题

某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代品,并投入资金1500万元进行批量生产.已知生产每件产品还需再投入40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利为z(万元).
(1)写出y与x及z与x的函数关系式;
(2)公司计划:在第一年按获利最大确定销售单价,进行销售;第二年年获利不低于1130万元,借助函数的说明,第二年的销售单价(元)应确定在什么范围内?

查看答案和解析>>

科目:初中数学 来源:2011年湖北省武汉市中考数学模拟试卷(E)(解析版) 题型:解答题

某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,现在投入资金1500万元购进生产线进行批量生产,已知生产每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,一年的销售量为20万件;销售单价每增加10元,年销售量就减少1万件.公司同时规定:该产品售价不得低于100元/件且不得超过180元/件.设销售单价为x(元),年销售量为y(万件),年盈利(年获利=处销售额-生产成本-投资)为w(万元).
(1)y与x的函数关系式并直接写出自变量x的取值范围;
(2)请说明第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元,若能,求出第二年的产品售价;若不能,请说明理由.

查看答案和解析>>

同步练习册答案