精英家教网 > 初中数学 > 题目详情
一个正三角形绕它的中心旋转后如果能和原来的图形重合,那么它至少要旋转(      )。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①所示,将一个正三角形纸片沿着它的一条边上的高剪开,得到如图②所示的两个全等的Rt△ABC、Rt△DEF.
精英家教网
(1)根据正三角形的性质可知:在图②中,∠ABC=∠DEF=30°,AB=DE=2AC=2DF.由此请你归纳一下在含30°角的直角三角形中,30°角所对的直角边与斜边之间的关系:
在含30°角的直角三角形中,30°角所对的直角边
 

(2)将这两个直角三角形纸片按如图③放置,使点B、D重合,点F在BC上.固定纸片DEF,将△ABC绕点F逆时针旋转角α(0°<α<90°),使四边形ACDE为以ED为底的梯形(如图④所示),求此时α的值;
(3)猜想图④中AE与CD之间的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90度.
(1)判断下列命题的真假(在相应的括号内填上“真”或“假”).
①等腰梯形是旋转对称图形,它有一个旋转角为180度.(

②矩形是旋转对称图形,它有一个旋转角为180°.(

(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是
①,③
(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形.
(3)写出两个多边形,它们都是旋转对图形,都有一个旋转角为72°,并且分别满足下列条件
①是轴对称图形,但不是中心对称图形:
如正五边形、正十五边形

②既是轴对称图形,又是中心对称图形:
如正十边形、正二十边形

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•福州质检)如图,是三个边长相同的正三角形拼成的图形,该图形绕着O点旋转120°后能与本身重合.现将图中的正三角形分别涂上红、黄、蓝三种颜色,使它成为一个含颜色的图案.
(1)如图①标记出了一种着色方案,请你在图②~⑥中标记出其余不同的着色方案;
(2)若一个图案绕着O点旋转120°点后能得到另一个图案,就将它们归为同一类,试对(1)中所有的图案进行分类,并用线把同一类图案的序号连起来;
(3)在(1)中,由图案①经过一次轴对称变换后能得到的图案的序号是
4,5,6
4,5,6

查看答案和解析>>

科目:初中数学 来源:2005年初中毕业升学考试(江苏南京卷)数学(带解析) 题型:解答题

在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90°.

(1)判断下列命题的真假(在相应括号内填上“真”或“假”):
①等腰梯形是旋转对称图形,它有一个旋转角为180°.(        )
② 矩形是旋转对称图形,它有一个旋转角为180°.(      )
(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是            .(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形 .   
(3)写出两个多边形,它们都是旋转对称图形,都有一个旋转角为72°,并且分别满足下列条件:
①是轴对称图形,但不是中心对称图形;   ②既是轴对称图形,又是中心对称图形.

查看答案和解析>>

科目:初中数学 来源:2005年初中毕业升学考试(江苏南京卷)数学(解析版) 题型:解答题

在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90°.

(1)判断下列命题的真假(在相应括号内填上“真”或“假”):

①等腰梯形是旋转对称图形,它有一个旋转角为180°.(         )

② 矩形是旋转对称图形,它有一个旋转角为180°.(       )

  (2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是             .(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形 .   

(3)写出两个多边形,它们都是旋转对称图形,都有一个旋转角为72°,并且分别满足下列条件:

①是轴对称图形,但不是中心对称图形;    ②既是轴对称图形,又是中心对称图形.

 

查看答案和解析>>

同步练习册答案