精英家教网 > 初中数学 > 题目详情

如图,在直角△ABC中,∠C=90°,∠B=30°,BC=4,以点C为圆心,2为半径作圆,则⊙C与直线AB的位置关系是________.

相切
分析:先根据直角三角形的性质求出AC及AB的长,再过点C作CH⊥AB于点H,根据三角形的面积公式求出CH的长,比较出CH与2的大小即可.
解答:∵在直角△ABC中,∠C=90°,∠B=30°,BC=4,
∴AC=BC•tan30°=4×=,AB=2AC=
过点C作CH⊥AB于点H,
∴AC•BC=AB•CH,即×4=×CH,解得CH=2,
∴以点C为圆心,2为半径作圆,则⊙C与直线AB的位置关系是相切.
故答案为:相切.
点评:本题考查的是直线与圆的位置关系,熟知直线和圆的三种位置关系是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°、AB=6、AC=3,⊙O与边AB相切于点D、与边AC交于点E,连接DE,若DE∥BC,AE=2EC,则⊙O的半径是
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°,AB的垂直平分线交AB于D,交AC于F,且BE平分∠ABC,则∠A=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,DE垂直平分AB.
(1)求∠B的度数;
(2)若DC=1,求DB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.在直角△ABC中,已知∠ACB=90°,CD⊥AB于点D,则下列关系不一定成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠A=90°,BC边上的垂直平分线交AC于点D;BD平分∠ABC,已知AC=m+2n,BC=2m+2n,则△BDE的周长为
2m+3n
2m+3n
(用含m,n字母表示).

查看答案和解析>>

同步练习册答案