精英家教网 > 初中数学 > 题目详情

如图甲,分别以两个彼此相邻的正方形OABCCDEF的边OCOA所在直线为x轴、y轴建立平面直角坐标系(OCF三点在x轴正半轴上).若⊙PABE三点(圆心在x轴上),抛物线经过AC两点,与x轴的另一交点为GMFG的中点,正方形CDEF的面积为1.

(1)求B点坐标;

(2)求证:ME是⊙P的切线;

(3)设直线AC与抛物线对称轴交于NQ点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;②若FQ=t,SACQ=s,直接写出s与t之间的函数关系式.

答案:
解析:

  解:(1)如图,连接PEPB,设PC

  ∵正方形CDEF面积为1,∴CDCF=1.

  根据圆和正方形的对称性知OPPC

  ∴BC=2PC=2  1分

  而PBPE

  

  

  ∴

  解得(舍去)  2分

  ∴BCOC=2,

  ∴B点坐标为  3分

  (2)如图,由(1)知AC

  ∵AC在抛物线上,∴,∴

  ∴抛物线的解析式为
提示:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=
14
x2+bx+c
经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2012届江苏省江阴市长泾片九年级下学期期中检测数学试卷(带解析) 题型:解答题

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为轴、轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在轴上),抛物线经过A、C两点,与轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
【小题1】求B点坐标;
【小题2】求证:ME是⊙P的切线;
【小题3】设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;②若FQ=,△ACQ的面积 S△ACQ,直接写出之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省无锡市江阴市澄东片九年级(下)期中数学试卷(解析版) 题型:解答题

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省无锡市江阴市中考数学模拟试卷(4月份)(解析版) 题型:解答题

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2011年湖北省荆州市中考数学试卷(解析版) 题型:解答题

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.

查看答案和解析>>