精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AB=5,AC=3,cosA=数学公式.D为射线BA上的点(点D不与点B重合),作DE∥BC交射线CA于点E.
(1)若CE=x,BD=y,求y与x的函数关系式,并写出函数的定义域;
(2)当分别以线段BD,CE为直径的两圆相切时,求DE的长度;
(3)当点D在AB边上时,BC边上是否存在点F,使△ABC与△DEF相似?若存在,请求出线段BF的长;若不存在,请说明理由.

解:(1)∵DE∥BC,


∴y=x(x>0且x≠3).
(2)作BH⊥AC,垂足为点H.
∵cosA=,AB=5,
∴AH==AC,
∴BH垂直平分AC.
∴△ABC为等腰三角形,AB=CB=5.
①当点D在BA边上时(两圆外切),如图(1)
易知:O1O2∥BC,∴O1O2=AO1
+=5-
∵y=x,
∴x=
∵DE∥BC,
∴DE=AD=5-y,
∴DE=-x+5.
∴DE=-×+5=
②当点D在BA延长线上时(两圆内切),如图(2)、(3),
易知O1O2∥BC,且O1O2=AO1
(ⅰ)如图(2),
∵O1O2=AO1
-=5-
∵y=x,
∴x=
∵DE∥BC,
∴DE=AD=y-5,
∴DE=x-5.
∴DE=×-5=
(ⅱ)如图(3),
∵O1O2=AO2
-=-5,
∴x=10.
∵DE∥BC,
∴DE=AD=y-5,
∴DE=x-5.
∴DE=×10-5=

(3)①当∠EDF=∠B时,
易得:AD=DE=DF=DB,
∴AF⊥BC,
由cosA=cosC=,AC=3,
∴FC=,∴BF=
②当∠DEF=∠B时,如图(5)
易得:△DBF≌△EFC,
∴BF=
③当∠DFE=∠B时,如图(6)

∵AB=5,BC=5,AC=3,
设DE=3k,DF=EF=5k,

∴k=
∴BF=5-3k=
综上所述:BF的长为:BF=
分析:(1)本题可利用DE∥BC,根据平行线分线段成比例定理,来求出x、y的函数关系式.
(2)本题要分两种情况:
①两圆外切,根据∠A的余弦值,如果过B作AC的垂线,不难得出△ABC为等腰三角形,因此AB=BC=5(也可用余弦定理求出BC的长).
那么△ADE也应该是等腰三角形,即AD=DE=5-y.
由于两圆外切,设以BD为直径的圆为⊙O1,以CE为直径的圆为⊙O2,那么O1O2就是梯形DECB的中位线,根据DE、BC的长即两圆的半径即可求出DE的长.
②两圆内切,此种情况又要分两种情况来求:
一:⊙O2内切于⊙O1,那么O1O2是两圆的半径差,可根据相似三角形ADE和AO1O2来求出DE的长.
二:⊙O1内切于⊙O2,同一.
(3)本题也要分三种情况:
①当∠ADE=∠FDE时,由于DE∥BC,那么∠ADE=∠FDE=∠DFB=∠B,即AD=DF=DE=DB,如果连接AF,那么DE必垂直平分AF,因此AF⊥CB,在直角三角形AFC中,由(2)知:∠A=∠C,因此根据AC的长和∠C的余弦值即可求出FC的长进而可求出BF的长.
②当∠DEF=∠B时,此时∠ADE=∠B=∠DEF,因此AB∥EF,四边形BDEF为平行四边形.因此△ADE≌△BDF,因此BF=BD=AB,由此可求出BF的长.
③当∠DFE=∠B时,可根据相似三角形对应的腰和底成比例求出BF的长.
点评:本题考查了等腰三角形的判定和性质、圆与圆的位置关系、相似三角形的判定和性质等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案