精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系内,直线y=2x经过点A(m,6),点B坐标为(4,0),
(1)求点A的坐标;
(2)若P为射线OA上的一点,当△POB是直角三角形时,求P点坐标.

解:(1)∵直线y=2x经过点A(m,6),
∴6=2m,
解得:m=3,
∴点A的坐标为(3,6);

(2)①当∠OBP=90°时,点P的横坐标与点B的横坐标相同,均为4,
将x=4代入y=2x,得y=8,
∴点P的坐标为(4,8),
②当∠OPB=90°时,PO2+PB2=OB2
设P点坐标为(n,2n),n2+(2n)2+(n-4)2+(2n)2=42
解得n1=,n2=0(舍去),
∴点P的坐标为
综上所述:当△POB是直角三角形时,点P的坐标为(4,8)或
分析:(1)根据直线y=2x经过点A(m,6),可得6=2m,易求m=3,即可得A点坐标;
(2)考虑有两种情况:①当∠OBP=90°时,点P的横坐标与点B的横坐标相同,均为4,把x=4代入y=2x,易求y=8,从而可得P点坐标;当∠OPB=90°时,可先设P点坐标是(n,2n),根据勾股定理易得n2+(2n)2+(n-4)2+(2n)2=42,解可求n1=,n2=0(舍去),进而可求P点坐标,综上所述:当△POB是直角三角形时,点P的坐标为(4,8)或
点评:本题考查了一次函数综合题、勾股定理.解题的关键是根据题意画出图,要根据P点的不同位置进行分类求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案