已知:如图所示,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE.求证:∠BAE=∠CAE.
证明在△AEB和△AEC中,
![]()
∴△AEB≌△ACE.(第一步)
∴∠BAE=∠CAE.(第二步)
问上面证明过程是否正确?若正确,请写出每一步推理的根据;若不正确,请指出错在哪一步,并写出正确过程.
科目:初中数学 来源:数学教研室 题型:022
查看答案和解析>>
科目:初中数学 来源: 题型:044
(2005 福州)已知:如图所示,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D,则△CDQ是等腰三角形,对上述命题证明如下:
![]()
证明 连接OC.∵OA=OC=OC,∴∠A==∠1.
∵CD切⊙O于C点,∴∠OCD=90=90°,
∴∠1+∠2=90°,∴∠A+∠2=90°,
在Rt△QPA中,∠QPA=90=90°,
∴∠A+∠Q=90=90°,∴∠2=∠Q.∴DQ=DC=DC.
即△CDQ是等腰三角形.
问题 对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com