精英家教网 > 初中数学 > 题目详情

作业宝如图,E、F是边长为4的正方形ABCD边AD、CD上的动点,若AE=EF,EF⊥FM交BC于M,则△FMC的周长为________.

8
分析:作AH⊥FM,连接AF,AM,根据正方形的性质分别证明△AFH≌△AFD和Rt△AMH≌Rt△AMB,由全等三角形的性质就可以得出结论.
解答:作AH⊥FM,设∠EAF=α,
∴∠AHF=∠AHM=90°
∵四边形ABCD是正方形,
∴AD=AB=BC=CD=4,∠D=∠B=90°
∵EF⊥FM,
∴∠EFM=90°
∵AE=AF,
∴∠EAF=∠EFA=a,
∴∠AFH=90°-α=∠AFD,
在△ADF和△AHF中

∴△AFH≌△AFD﹙AAS﹚
∴DF=HF,AD=AH=4=AB;
在Rt△AHM和Rt△ABM中

∴Rt△AMH≌Rt△AMB,
∴HM=BM.
∵△FMC的周长=CF+FM+MC,
∴△FMC的周长=CF+FD+MB+MC=CD+CB=8.
 故答案为:8.
点评:本题考查了正方形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,解答时正确作辅助线是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•湛江)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,an,则an=
2
n-1
2
n-1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,点O是边长为1的等边△ABC内的任一点,设∠AOB=α°,∠BOC=β°

(1)将△BOC绕点C沿顺时针方向旋转60°得△ADC,连结OD,如图2所示.求证:OD=OC.
(2)在(1)的基础上,将△ABC绕点C沿顺时针方向旋转60°得△EAC,连结DE,如图3所示.求证:OA=DE
(3)在(2)的基础上,当α、β满足什么关系时,点B、O、D、E在同一直线上.并直接写出AO+BO+CO的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•东莞模拟)如图,每个小方格是边长为1各单位长度的小正方形
(1)将图形向右平移4各单位长度,画出平移后的图形;
(2)再将平移后的图形绕点O顺时针旋转90°,画出旋转后的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知P是边长为a的正方形ABCD内一点,△PBC是等边三角形,则△PAD的外接圆半径是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…,记正方形ABCD的边长a1=1,依上述方法所作的正方形的边长依次为a1,a2,a3,…,an,根据上述规律,则第n个正方形的边长an的表达式为(  )

查看答案和解析>>

同步练习册答案