精英家教网 > 初中数学 > 题目详情
在△ABC中,AB=AC,AD和CE是高,它们所在的直线相交于H.
(1)若∠BAC=45°(如图①),求证:AH=2BD;
(2)若∠BAC=135°(如图②),(1)中的结论是否依然成立?请在图②中画出图形并证明你的结论.

精英家教网

精英家教网
证明:(1)∵AB=AC,AD⊥BC,
∴BC=2BD.
∵CE⊥AB,∠BAC=45°,
∴∠ECA=45°.
∴AE=CE.
又AD⊥BC,CE⊥AB,
可得∠EAH=∠ECB,
在△AEH和△CEB中,
∠EAH=∠ECB
AE=CE
∠AEH=∠BEC

∴△AEH≌△CEB(ASA).
∴AH=BC.
∴AH=2BD.

(2)答:(1)中结论依然成立.
所画图形如图所示.延长BA交HC于E.
∵∠BAC=135°,
∴∠CAE=45°.
∵AE⊥HC,
∴∠ACE=∠CAE=45°.
∴AE=CE.
∵HD⊥BC,BE⊥HC,
可得∠B=∠H.
在Rt△BEC和Rt△HEA中,
∠B=∠H
∠EC=∠HEA
CE=AE

∴Rt△BEC≌Rt△HEA(AAS).
∴AH=BC.
又BC=2BD,
∴AH=2BD.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案