精英家教网 > 初中数学 > 题目详情

已知梯形ABCD中,AB∥CD,BD⊥AC于E,AD=BC,AC=AB,DF⊥AB于F,AC、DF相交于DF的中点O.
求证:AB+CD=2BE.

证明:过D作DM∥AC交BA的延长线于M.
∵梯形ABCD中,AD=BC,
∴BD=AC.
又∵CD∥AM,DM∥AC,
∴四边形CDMA为平行四边形.
∴DM=AC,CD=AM.
∵MD∥AC,又AC⊥BD,且AC=BD,
∴DM⊥BD,DM=BD,
∴△DMB为等腰直角三角形.
又∵DF⊥BM,
∴DF=BF.
∴BM=2DF=2BF
∴AM+AB=2BF.
∵CD=AM,
∴AB+CD=2BF.
∵AC=BD=AB,
∴在△BEA和△BFD中,△BEA≌△BFD.
∴BE=BF.
∵AB+CD=2BF,
∴AB+CD=2BE.
分析:过D作DM∥AC交BA的延长线于M,则四边形CDMA为平行四边形,得DM=AC,CD=AM,从而得到DMB为等腰直角三角形,根据等腰直角三角形的性质可以证明AM+AB=2BF;再结合全等三角形的性质即可证明.
点评:此题综合运用了等腰梯形的性质、全等三角形的判定及性质、平行四边形的判定及性质以及直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知梯形ABCD中,AD∥BC,∠ABC=60°,BD=2
3
,AE为梯形的高,且BE=1,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.
(1)求证:AE⊥BD;    (2)若AD=4,BC=14,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知梯形ABCD中,AD∥BC,AB=CD,∠B=45°,它的高为2cm,中位线长为5cm,则上底AD等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知梯形ABCD中,AD∥BC,∠B=40°,∠C=70°,AD=3,BC=7,则腰AB=
4
4

查看答案和解析>>

同步练习册答案