精英家教网 > 初中数学 > 题目详情

在△ABC与△A′B′C′中,有下列条件:①数学公式;(2)数学公式③∠A=∠A′④∠C=∠C′.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有______组.

解:①②组合,


∴△ABC∽△A′B′C′(三条对应边的比相等的三角形相似);
②④组合,
,④∠C=∠C′,
∴△ABC∽△A′B′C′(对应边成比例且夹角相等的三角形相似);
③④组合,
∵∠A=∠A′,∠C=∠C′,
∴△ABC∽△A′B′C′(有两角对应相等的三角形相似).
∴能判断△ABC∽△A′B′C′的共有3组.
故答案为3.
分析:根据相似三角形的判定定理:三条对应边的比相等的三角形相似可得需①②组合,对应边成比例且夹角相等的三角形相似可得②④组合,有两角对应相等的三角形相似可得③④组合,则可求得答案.
点评:此题考查了相似三角形的判定.此题难度不大,解题的关键是熟记相似三角形的判定定理,掌握定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC与△BDE中,∠ABC=∠BDE=90°,BC=DE,AC=BE,M、N分别为AB、BD中点.连接MN交CE于点K.
(1)如图1.当C、B、D共线,AB=2BC时,探索CK与EK之间的数量关系,并证明;
(2)如图2,当C、B、D不共线,且AB≠2BC时,(1)中的结论是否成立,若成立,请证明;若不成立,请说明理由;
(3)将题中的条件“∠ABC=∠BDE=90°,BC=DE,AC=BE”都去掉,再添加一个条件,写出一个类似的对一般三角形都成立的问题.(画出图形,写出已知和结论,不用证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC与△ADE中,∠C=∠E,∠1=∠2,AC=AD=2AB=6,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:
①∠AFC=∠C;②DE=CF;③△ADE∽△FBD;④∠BFD=∠CAF.
其中正确的结论是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC与△DEF中,给出下列条件①
AC
DF
=
BC
EF
,②∠A=∠D,③∠C=∠F,④
AC
AB
=
DF
DE
,从中任选2个条件能使△ABC与△DEF相似的概率为多少?请用树状图或列表法分析(用序号代替).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC与△DCB中,∠A=∠D,要使△ABC≌△DCB,需要添加的一个条件是
∠ABC=∠DCB
∠ABC=∠DCB

查看答案和解析>>

同步练习册答案