精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中,点E在中线AD上,∠DEB=∠ABC.
求证:(1)DB2=DE•DA;
(2)∠DCE=∠DAC.

证明:(1)在△BDE和△DAB中
∵∠DEB=∠ABC,∠BDE=∠ADB,
∴△BDE∽△ADB,

∴BD2=AD•DE.

(2)∵AD是中线,
∴CD=BD,
∴CD2=AD•DE,

又∠ADC=∠CDE,
∴△DEC∽△DCA,
∴∠DCE=∠DAC.
分析:(1)根据已知可证△BDE∽△DAB,得到,即证BD2=AD•DE.
(2)在(1)的基础上,因为CD=BD,可证,即可证△DEC∽△DCA,得到∠DCE=∠DAC.
点评:本题考查相似三角形的判定和性质.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边成比例、对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案