分析 (1)根据矩形的性质得到AD=BC=10,∠D=∠B=∠C=90°,由折叠的性质得到AE=AD=BC=10,根据勾股定理即可得到结果;
(2)由(1)知BE=6,于是得到CE=BC-BE=4,根据折叠的性质得到EF=DF=8-CF,根据勾股定理即可得到结论.
解答 解:(1)长方形ABCD中,
∵AD=BC=5,∠D=∠B=∠C=90°,
∵△AEF是△ADF沿折痕AF折叠得到的,
∴AE=AD=BC=10,
∴BE=$\sqrt{A{E}^{2}-A{B}^{2}}=\sqrt{1{0}^{2}-{8}^{2}}=6$;
(2)由(1)知BE=6,
∴CE=BC-BE=4,
∵△AEF是△ADF沿折痕AF折叠得到的,
∴EF=DF=8-CF,
∵EF2=CE2+CF2,
∴(8-CF)2=42+CF2,
解得:CF=3.
点评 本题主要考查了图形的翻折变换,以及勾股定理、全等三角形、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.
科目:初中数学 来源: 题型:选择题
| A. | a+5<b+5 | B. | $\frac{a}{5}$$<\frac{b}{5}$ | C. | 5a-1<5b-1 | D. | 5-a<5-b |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 两条不相交的直线就是平行线 | |
| B. | 过任意一点可以作已知直线的一条平行线 | |
| C. | 过直线外任意一点作已知直线的垂线,可以作无数条 | |
| D. | 直线外一点与直线上各点所连接的所有线段中,垂线段最短 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com