精英家教网 > 初中数学 > 题目详情
(     )边形的内角和等于540,正十边形的一个外角等于(     )。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•齐齐哈尔)如图,蜂巢的横截面由正六边形组成,且能无限无缝隙拼接,称横截面图形由全等正多边形组成,且能无限无缝隙拼接的多边形具有同形结构.
若已知具有同形结构的正n边形的每个内角度数为α,满足:360=kα(k为正整数),多边形外角和为360°,则k关于边数n的函数是
k=
2n
n-2
(n=3,4,6)或k=2+
4
n-2
(n=3,4,6)
k=
2n
n-2
(n=3,4,6)或k=2+
4
n-2
(n=3,4,6)
(写出n的取值范围)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

我们常用各种多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里称为平面密铺).当围绕一点拼在一起的几个多边形的内角和为360°时,就能够拼成一个平面图形.
探究用同一种正多边形进行平面密铺.
例如:如图1,用三个同种类型(大小一样、形状相同)的正六边形地砖可以平面密铺.
(1)请问仅限于同一种类型的多边形进行密铺,哪几种能平面密铺?
①②
①②
(填序号);
①正三角形    ②正四边形     ③正五边形     ④正八边形
探究用两种边长相等的正多边形进行平面密铺.
例如:如图2,二个正三角形和二个正六边形可以平面密铺.
(2)限用两种边长相等的正多边形进行平面密铺,以下哪几种是可行的?
ABE
ABE

A.正三角形和正方形      B.正方形和正八边形         C.正方形和正五边形
D.正八边形和正六边形    E.正三角形和正十二边形    F.正三角形和正五边形
(3)继续推广到用三种不同的正多边形进行平面密铺,请写出符合题意的不同组合.
例如:①正三角形、正方形、正六边形;
②正三角形、正九边形、正十八边形;
正三角形、正四边形,正十二边形
正三角形、正四边形,正十二边形

正三角形,正十边形,正十五边形
正三角形,正十边形,正十五边形

(4)如果用形状,大小相同的如图3方格纸中的三角形,能进行平面密铺吗?若能,请在方格纸中画出密铺的设计图.

查看答案和解析>>

科目:初中数学 来源: 题型:013

选择题:

(1)在三角形的三个外角中,锐角最多只有

[  ]

A.3个
B.2个
C.1个
D.0个

(2)(n+1)边形的内角和比n边形的内角和大

[  ]

A.180°
B.360°
C.n·180°
D.n·360°

(3)若三角形三个内角的比为1:2:3,则这个三角形是

[  ]

A.锐角三角形
B.直角三角形
C.等边三角形
D.钝角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,蜂巢的横截面由正六边形组成,且能无限无缝隙拼接,称横截面图形由全等正多边形组成,且能无限无缝隙拼接的多边形具有同形结构.

若已知具有同形结构的正n边形的每个内角度数为α,满足:360=kα(k为正整数),多边形外角和为360°,则k关于边数n的函数是    (写出n的取值范围)

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(黑龙江黑河、齐齐哈尔、大兴安岭卷)数学(解析版) 题型:填空题

如图,蜂巢的横截面由正六边形组成,且能无限无缝隙拼接,称横截面图形由全等正多边形组成,且能无限无缝隙拼接的多边形具有同形结构.

若已知具有同形结构的正n边形的每个内角度数为α,满足:360=kα(k为正整数),多边形外角和为360°,则k关于边数n的函数是    (写出n的取值范围)

 

 

查看答案和解析>>

同步练习册答案