精英家教网 > 初中数学 > 题目详情

作业宝如图,在直角坐标系中,△ABC满足∠C=90°,AC=4,BC=2,点A、C分别在x、y轴上,当A点从原点开始在x轴正半轴上运动时,点C随着在y轴正半轴上运动.
(1)当A点在原点时,求原点O到点B的距离OB;
(2)当A点在x正半轴向右运动,点C随着在y轴正半轴运动至O点,在平面上有一点P,使△ACP为等边三角形,求点P的坐标;
(3)当OA=OC时,求原点O到点B的距离OB.

解:(1)如图,A点在原点时,OB=
=
=2

(2)如图,点C运动至点O,过点P作PD⊥AC于D,
∵△ACP是等边三角形,
∴CD=AC=×4=2,
PD=PC=×4=2
点P在x轴上方时,P1(2,2),
点P在x轴下方时,P2(2,-2);

(3)过点B作BE⊥y轴于E,
∵OA=OC,
∴△AOC是等腰直角三角形,
∴∠ACO=45°,OC=4×=2
∵∠ACB=90°,
∴∠BCE=180°-90°-45°=45°,
∴△BCE是等腰直角三角形,
∴CE=BE=2×=
∴OE=2+=3
在Rt△BOE中,OB===2
分析:(1)根据勾股定理列式计算即可得解;
(2)过点P作PD⊥AC于D,根据等边三角形的性质求出CD、PD,然后分点P在x轴上方和下方两种情况讨论求解;
(3)过点B作BE⊥y轴于E,判断出△AOC和△BCE是等腰直角三角形,再根据等腰直角三角形的性质求出CE、BE,然后求出OE的长,利用勾股定理列式计算即可得解.
点评:本题考查了勾股定理,坐标与图形的性质,等边三角形的性质,等腰直角三角形的判定与性质,读懂题目信息理解所求时刻的三角形的形状是解题的关键,作出图形更形象直观.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案