精英家教网 > 初中数学 > 题目详情
计算
1
2
+
3
+
1
2
+1
-
2
3
+1
的结果为(  )
A、0
B、1
C、
3
+2
2
D、1-
2
分析:首先进行分母有理化,然后合并同类二次根式即可求解.
解答:解:
1
2
+
3
+
1
2
+1
-
2
3
+1

=
3
-
2
+
2
-1-(
3
-1),
=0.
故选A.
点评:此题主要考查了二次根式的加减运算,二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,将以上三个等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4

(1)猜想并写出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
. 
1
1×2
+
1
2×3
+…+
1
2013×2014
=
2013
2014
2013
2014

(2)探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2012×2014

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读理解题.
请先阅读下列一组内容,然后解答问题:
因为
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,…
1
9×10
=
1
9
-
1
10
所以
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
9
-
1
10
)=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
9
-
1
10
=1-
1
10
=
9
10

计算(1)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2004×2005
+
1
2005×2006

(2)
1
1×3
+
1
3×5
+
1
5×7
+…+
1
49×51

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列各式:
-1×
1
2
=-1+
1
2
-
1
2
×
1
3
=-
1
2
+
1
3
-
1
3
×
1
4
=-
1
3
+
1
4

(1)你发现了什么规律?
(2)用得到的规律计算:(-1×
1
2
)+(-
1
2
×
1
3
)+(-
1
3
×
1
4
)+…+(-
1
2011
×
1
2012
).

查看答案和解析>>

科目:初中数学 来源: 题型:

同学们学过有理数减法可以转化为有理数加法来运算,有理数除法可以转化为有理数乘法来运算.其实这种转化的数学方法,在学习数学时会经常用到,通过转化我们可以把一个复杂问题转化为一个简单问题来解决.
例如:计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5

此题我们按照常规的运算方法计算比较复杂,但如果采用下面的方法把乘法转化为减法后计算就变得非常简单.
分析方法:因为
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
4×5
=
1
4
-
1
5

所以,将以上4个等式两边分别相加即可得到结果,解法如下:
解:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+(
1
4
-
1
5
)
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
=1-
1
5
=
4
5

(1)应用上面的方法计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012

(2)计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1
(只填答案).
(3)类比应用上面的方法探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2010×2012

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:
计算(1+
1
2
+
1
3
+
1
4
)
×(
1
2
+
1
3
+
1
4
+
1
5
)
-(1+
1
2
+
1
3
+
1
4
+
1
5
)
×(
1
2
+
1
3
+
1
4
)
时,若把(
1
2
+
1
3
+
1
4
+
1
5
)
与(
1
2
+
1
3
+
1
4
)
分别各看着一个整体,再利用分配律进行运算,可以大大简化难度.过程如下:
解:设(
1
2
+
1
3
+
1
4
)
为A,(
1
2
+
1
3
+
1
4
+
1
5
)
为B,
则原式=B(1+A)-A(1+B)=B+AB-A-AB=B-A=
1
5
.请用上面方法计算:
(1+
1
2
+
1
3
+
1
4
+
1
5
+
1
6
)
(
1
2
+
1
3
+
1
4
+
1
5
+
1
6
+
1
7
)
-(1+
1
2
+
1
3
+
1
4
+
1
5
+
1
6
+
1
7
)
(
1
2
+
1
3
+
1
4
+
1
5
+
1
6
)

(1+
1
2
+
1
3
…+
1
n
)
(
1
2
+
1
3
…+
1
n+1
)
-(1+
1
2
+
1
3
…+
1
n+1
)
(
1
2
+
1
3
…+
1
n
)

查看答案和解析>>

同步练习册答案