精英家教网 > 初中数学 > 题目详情

菱形的面积为,一条对角线长为6cm,则另一条对角线长为________cm,菱形高为________cm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某中学有一块长为a米,宽为b米的矩形场地,计划在该场地上修筑宽都为2米的两条互相垂直的道路,余下的四块矩形小场地建成草坪.
(1)如图,请分别写出每条道路的面积(用含a或含b的代数式表示);
(2)已知a:b=2:1,并且四块草坪的面积之和为312米2,试求原来矩形场地的长与宽各为多少米?
(3)在(2)的条件下,为进一步美化校园,根据实际情况,学校决定对整个矩形场地作如下设计(要求同时符合下述两个条件):
条件①:在每块草坪上各修建一个面积尽可能大的菱形花圃(花圃各边必须分别与所在草坪的对角线平行),并且其中有两个花圃的面积之差为13米2
条件②:整个矩形场地(包括道路、草坪、花圃)为轴对称图形.
请你画出符合上述设计方案的一种草图(不必说明画法与根据),并求出每个菱形花圃的面积.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

若菱形的两条对角线的比为3:4,且周长为20cm,则它的一组对边的距离等于
 
cm,它的面积等于
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,矩形铁片ABCD中,AD=8,AB=4; 为了要让铁片能穿过直径为3.8的圆孔,需对铁片进行处理 (规定铁片与圆孔有接触时铁片不能穿过圆孔).
(1)直接写出矩形铁片ABCD的面积
32
32

(2)如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,将矩形铁片的四个角去掉.
①证明四边形MNPQ是菱形;
②请你通过计算说明四边形铁片MNPQ能穿过圆孔.
(3)如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片.当BE=DF=1时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2012届福建省永春县九年级上学期期末数学试卷(带解析) 题型:解答题

如图1, 矩形铁片ABCD中,AD="8," AB="4;" 为了要让铁片能穿过直径为3.8的圆孔, 需对铁片进行处理 (规定铁片与圆孔有接触时铁片不能穿过圆孔).
(1)直接写出矩形铁片ABCD的面积           
(2)如图2, M、N、P、Q分别是AD、AB、BC、CD的中点,将矩形铁片的四个角去掉.
①证明四边形MNPQ是菱形;
②请你通过计算说明四边形铁片MNPQ能穿过圆孔.
(3)如图3, 过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合), 沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片.当BE=DF=1时,判断直角梯形铁片EBAF能否穿过圆孔, 并说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年福建省永春县九年级上学期期末数学试卷(解析版) 题型:解答题

如图1, 矩形铁片ABCD中,AD=8, AB=4; 为了要让铁片能穿过直径为3.8的圆孔, 需对铁片进行处理 (规定铁片与圆孔有接触时铁片不能穿过圆孔).

(1)直接写出矩形铁片ABCD的面积           

(2)如图2, M、N、P、Q分别是AD、AB、BC、CD的中点,将矩形铁片的四个角去掉.

① 证明四边形MNPQ是菱形;

②请你通过计算说明四边形铁片MNPQ能穿过圆孔.

(3)如图3, 过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合), 沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片.当BE=DF=1时,判断直角梯形铁片EBAF能否穿过圆孔, 并说明理由.

 

查看答案和解析>>

同步练习册答案