精英家教网 > 初中数学 > 题目详情

我们知道数学公式数学公式数学公式;…根据上述规律,计算数学公式=________.


分析:分别根据题意把对应的分式拆分成差的形式,则原式=(1-)+(-)+(-)+…(-)=1-=
解答:原式=(1-)+(-)+(-)+…(-)=1-=
点评:解此类题目,关键是根据所给的条件找到规律.根据题中所给的材料获取所需的信息和解题方法是需要掌握的基本技能.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们知道,根据二次函数的平移规律,可以由简单的函数通过平移后得到较复杂的函数,事实上,对于其他函数也是如此.如一次函数,反比例函数等.请问y=
3x-2
x-1
可以由y=
1
x
通过
 
平移得到.

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
;…根据上述规律,计算
1
1×2
+
1
2×3
+
1
3×4
+…
1
9×10
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=
底边
=
BC
AB
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°=
1
1

(2)对于0°<A<180°,∠A的正对值sadA的取值范围是
0<sadA<2
0<sadA<2

(3)如图,已知cosA=
4
5
,其中∠A为锐角,试求sanA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,也可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=
1
2
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3

(2)对于0°<A<180°,∠A的正对值sadA的取值范围是
0<sadA<2
0<sadA<2

(3)如图,已知sinA=
3
5
,其中A为锐角,试求sadA的值;
(4)设sinA=k,请直接用k的代数式表示sadA的值为
2-2
1-k2
2-2
1-k2

查看答案和解析>>

同步练习册答案