
(1)证明:在△BCE和△DCF中,
∵

,
∴△BCE≌△DCF(SAS),
∴∠EBC=∠FDC(全等三角形的对应边相等),即∠EBC=∠EDM,
在△BCE和△DME中,
∵

,
∴△BCE∽△DME,
∴∠BCE=∠DME=90°(相似三角形的对应角相等),即BM⊥DF;
(2)解:∵BC=2,
∴BD=2

.
又∵BE平分∠DBC交DF于M,BM⊥DF,
∴BD=BF(等腰三角形“三合一”的性质),DM=FM,
∴CF=2

-2.
在△BMF和△DME中,
∠MBF=∠MDE,∠BMF=∠DME=90°,
∴△BMF∽△DME,
∴

=

,
∴

=

,即ME•MB=MD
2,
∵DC
2+FC
2=(2DM)
2,即2
2+(2

-2)
2=4DM
2,
∴DM
2=4-2

,即ME•MB=4-2

.
分析:(1)通过全等三角形△BCE≌△DCF的对应角∠EBC=∠FDC、对顶角∠BEC=∠DEM可以证得△BCE∽△DME,然后由相似三角形的对应角相等推知∠BCE=∠DME=90°,即BM⊥DF;
(2)由等腰三角形的判定与性质知BM是等腰三角形BDF的中垂线.根据相似三角形△BMF∽△DME的对应边成比例、等腰三角形的性质列出比例式

=

,即ME•MB=MD
2,最后在直角△DCF中利用勾股定理来求MD
2的值.
点评:本题综合考查了全等三角形、正方形、相似三角形的有关知识.等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.