精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中,AB=3,BC=4,∠B=90°,若将△ABC折叠,使C点与A点重合,求折痕EF的长.

解:在Rt△ABC中,AC==5,
设AF=x,则FC=x,BF=4-x,
在Rt△ABF中,AF2-BF2=AB2,即x2-(4-x)2=9,
解得:x=3,
在Rt△CEF中,CF=3,CE=AC=
故可得:EF===
分析:设AF=x,则FC=x,BF=4-x,在Rt△ABF中求出x,然后在Rt△ABC中求出AC,继而在Rt△CEF中可求出EF.
点评:本题考查了翻折变换及勾股定理的知识,解答本题的关键是掌握翻折变换的性质及勾股定理的表达式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案