精英家教网 > 初中数学 > 题目详情

已知关于x的一元二次方程x2-(4m+1)x+3m2+m=0.
(1)求证:无论m取何实数时,原方程总有两个实数根;
(2)若原方程的两个实数根一个大于2,另一个小于7,求m的取值范围.

(1)证明:∵△=[-(4m+1)]2-4(3m2+m)=4(m+2
∵(m+2是非负数,
∴4(m+2≥0,即△≥0.
∴无论m取何实数时,原方程总有两个实数根;

(2)解:解关于x的一元二次方程x2-(4m+1)x+3m2+m=0得到,x=
∴x1=,x2=m.
则由题意,得
解得,<m<7.
即m的取值范围是<m<7.
分析:(1)根据一元二次方程的根的判别式的符号来证明:
(2)先求出原方程的两个实数根,根据两个实数根一个大于2,另一个小于7,列出不等式组,求出m的取值范围.
点评:本题考查一元二次方程根的判别式,当△≥0时,方程有两个实数根;同时考查了公式法解一元二次方程及解一元一次不等式组.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案