精英家教网 > 初中数学 > 题目详情

作业宝如图,正方形ABCD中,点E在BC边上,将△ABE沿点B顺时针旋转90°到△CBF的位置,延长AE交CF于G.
(1)猜想线段AE和CF的关系.
(2)阐释你的理由.

解:(1)AE=CF,AE⊥CF;

(2)理由:
∵将△ABE沿点B顺时针旋转90°到△CBF的位置,
∴△ABE≌△CBF,∠ABE=∠FBC=90°,
∴AE=CF,∠BAE=∠BCF,
∵∠AEB=∠GCE,
∴∠ABE=∠CGE=90°,
∴AE⊥CF.
分析:(1)先由旋转的性质可知,旋转前后两个图形一定全等,得出CF=AE,进而猜想AE与CF的位置关系,
(2)由△ABE≌△CBF,根据全等三角形的对应角相等,得出∠EAB=∠BCF,再结合三角形内角和定理即可作出判断.
点评:本题主要考查了旋转的性质,旋转只是改变图形的位置,不改变图形的形状与大小,旋转前后的两个图形一定全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案