精英家教网 > 初中数学 > 题目详情

作业宝已知:如图,在等腰梯形ABCD中,AD∥BC,M、N分别为AD、BC的中点,E、F分别是BM、CM的中点.
求证:(1)△ABM≌△DCM;(2)四边形MENF是菱形.

证明:(1)∵四边形ABCD是等腰梯形,
∴AB=CD,∠A=∠D,
∵M是AD的中点,
∴AM=DM,
在△ABM与△DCM中,

∴△ABM≌△DCM(SAS);

(2)∵△ABM≌△DCM,
∴BM=CM,
∵M、N分别是AD、BC的中点,E、F分别是BM、CM的中点,
∴EN=CM=MF,EM=BM=FN,
∴ME=EN=NF=FM,
∴四边形MENF是菱形.
分析:(1)先根据四边形ABCD是等腰梯形,则AB=CD,∠A=∠D,再利用SAS证明△ABM≌△DCM,
(2)利用全等的性质得出BM=CM,再根据三角形的中位线定理得出EN=MF,EM=FN,从而根据四条边相等的四边形是菱形得出结论.
点评:本题考查了菱形的判定:四条边相等的四边形是菱形,全等三角形的判定以及等腰梯形的性质,综合性较强,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源:2011年河南省周口市初一下学期相交线与平行线专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

科目:初中数学 来源:2011年河南省周口市初一下学期平移专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

同步练习册答案