精英家教网 > 初中数学 > 题目详情
已知平面直角坐标系中,A、B、C三点的坐标分别是(0,2)、(0,-2),(4,-2)。
(1)请在给出的直角坐标系XOY中(下图),画出△ABC,设AC交X轴于点D,连结BD,证明:OD平分∠ADB;
(2)请在X轴上找出点E,使四边形AOCE为平行四边形,写出E点坐标,并证明四边形AOCE是平行四边形;
(3)设经过点B,且以CE所在直线为对称轴的抛物线的顶点为F,求直线FA的解析式。

解:(1)画图如右
∵OA=2=OB,OD⊥AB,即OD垂直平分AB,
∴DA=DB,
从而OD平分∠ADB;
(2)过点C作CE⊥x轴,E为垂足,则E(4,0),
使四边形AOCE为平行四边形,理由如下:
∵AO=2=CE,又AO⊥x轴,CE⊥x轴AO∥CE,
∴四边形AOCE是平行四边形;
(3)设过A(0,2),C(4,-2)的解析式为y=k1x+b1

∴直线AC的解析式为y=-x+2,
令y=0,得x=2,
故D的坐标为(2,0),
由于抛物线关于CE对称,故D关于CE的对称点D′(6,0)也在抛物线上,
所以抛物线过B(0,-2),D(2,0),D′(6,0),
设抛物线解析式为y=ax2+bx+c,
则有
∴抛物线解析式为y=
其顶点为F
设经过F,A(0,2)的解析式为y=k2x+b2

∴直线FA的解析式为y=-x+2。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、已知平面直角坐标系中两点A(-1,O)、B(1,2).连接AB,平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(2,-1),则B的对应点B1的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知平面直角坐标系中三个顶点的坐标为D(1,-4),E(1,2),F(3,0),那么,△DEF的面积为(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知平面直角坐标系中三个点A(-8,0)、B(2,0)、C(
163
,0)
精英家教网O为坐标原点.以AB为直径的⊙M与y轴的负半轴交于点D.
(1)求直线CD的解析式;
(2)求证:直线CD是⊙M的切线;
(3)过点A作AE⊥CD,垂足为E,且AE与⊙M相交于点F,求一个一元二次方程,使它的两个根分别是AE和AF.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、已知平面直角坐标系中两点A(-2,3),B(-3,1),连接AB,平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(3,4),则点B1的坐标为
(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知平面直角坐标系中,菱形ABCD的顶点分别在x轴、y轴上,其中C,D两点的坐标分别为(4,0),(0,-3).两动点P、Q分别从A、C同时出发,点P以每秒1个单位的速度沿线段AB向终点B运动,点Q以每秒2个单位的速度沿折线CDA向终点A运动,设运动时间为x秒.
(1)求菱形ABCD的高h和面积s的值;
(2)当Q在CD边上运动,x为何值时直线PQ将菱形ABCD的面积分成1:2两部分;
(3)设四边形APCQ的面积为y,求y关于x的函数关系式(要写出x的取值范围);在P、Q运动的整个过程中是否存在y的最大值?若存在,求出这个最大值,并指出此时P、Q的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案