精英家教网 > 初中数学 > 题目详情

如图,一次函数y1=mx+n的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=数学公式(x<0)交于点C,过点C分别作x轴、y轴的垂线,垂足分别为点E、F,若OB=2,CF=6,数学公式
(1)求一次函数和反比例函数的表达式;
(2)请直接写出当y1<y2时x的取值范围.

解:(1)∵∠CEA=∠BOA=90°,∠CAE=∠BAO,
∴△CEA∽△BOA,
=
=
=,即AE=2OA,
又OA=2,
∴CE=2OB=4,又CF=6,
∴C坐标为(-6,4),
将C坐标代入y2=中,得:4=,即k=-24,
则反比例解析式为y2=-(x<0);
∵OB=2,即B(0,-2),C(-6,4),
将B与C坐标代入y1=mx+n中,得:
解得:
则一次函数解析式为y1=-x-2;

(2)由函数图象可得:当y1<y2时x的取值范围为x>-6.
分析:(1)由一对直角相等,及一对对顶角相等,利用两对对应角相等的两三角形相似,得到三角形ACE与三角形AOB相似,由相似得比例,再由OA与OE的比值求出AE与AO的比值,得到两三角形的相似比,由OB的长求出CE的长,再由CF的长,确定出C的坐标,将C坐标代入反比例解析式中求出k的值,确定出反比例解析式;将B与C坐标代入一次函数解析式中求出m与n的值,确定出一次函数解析式;
(2)由两函数交点C的横坐标,根据函数图象即可得到满足题意x的范围.
点评:此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,数形结合思想是数学中重要的思想方法,做题时注意灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y1=kx+b的图象与反比例函数y2=
m
x
的图象交于A、B两点,点A、B的横坐标分别为-2、1.当y1>y2时,自变量x的取值范围是(  )
A、-2<x<1
B、0<x<1
C、x<-2和0<x<1
D、-2<x<1和x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=
mx
 
(m≠0)
的图象交于二、四象限内的A、B两点,过A作AC⊥x轴于点C,连接OA、OB、BC.已知OC=4,tan∠OAC=2,点B的纵坐标为-6.
(1)求反比例函数和直线AB的解析式;
(2)求四边形OACB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+b的图象与反比例函数y2=
mx
的图象相交于A、B两点,试利用图中条件,求y1和y2的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+1(k≠0)与反比例函数y2=
mx
(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?
(3)当y1>y2时,请直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+b与反比例函数y2=-
6x
交于点A(m,6)、B(3,n).
(1)求一次函数的关系式;
(2)求△AOB的面积;
(3)直接写出y1>y2时x的取值范围.

查看答案和解析>>

同步练习册答案