精英家教网 > 初中数学 > 题目详情
21、已知,OP平分∠AOB,OA=OB,则AP=BP,请说明理由.
解:∵OP平分∠AOB,
∠AOP
=
∠BOP
角平分线的性质

∵OA=OB,
OP
=
OP
(公共边)
△AOP
△BOP
(SAS),
∴AP=BP(
全等三角形的对应边相等
分析:根据角平分线的性质可得到有一组相等的角,根据提示可找到一组公共边OP,从而根据SAS判定△AOP≌△BOP,根据全等三角形的性质即可得到结论.
解答:解:∵OP平分∠AOB,
∴∠AOP=∠BOP(角平分线的性质)
∵OA=OB,OP=OP(公共边)
∴△AOP≌△BOP(SAS),
∴AP=BP(全等三角形的对应边相等)
点评:此题主要考查学生对全等三角形的判定及性质的掌握情况,熟练掌握基本的性质是正确解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止运动,设P、Q运动的时间为t秒(t>0).
(1)试求出△APQ的面积S与运动时间t之间的函数关系式;
(2)在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.求出此时△APQ的面积.
(3)在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯形?若存在,求出点E的坐标;若不存在,请说明理由.
(4)伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.
精英家教网
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•盐城二模)如图,在平面直角坐标系中,已知直线AB:y=-
34
x+3分别与x轴、y轴分别交于点A、点B.动点P、Q分别从O、A同时出发,其中点P以每秒1个点位长度的速度沿OA方向向A点匀速运动,到达A点后立即以原速度沿AO返向;点Q以每秒1个单位长度的速度从A点出发,沿A-B-O方向向O点匀速运动.当点Q到达点O时,P、Q两点同时停止运动.设运动时间为t(秒).
(1)求点A与点B的坐标;
(2)如图1,在某一时刻将△APQ沿PQ翻折,使点A恰好落在AB边的点C处,求此时△APQ的面积;
(3)若D为y轴上一点,在点P从O向A运动的过程中,是否存在某一时刻,使得四边形PQBD为等腰梯形?若存在,求出t的值与D点坐标;若不存在,请说明理由;
(4)如图2,在P、Q两点运动过程中,线段PQ的垂直平分线EF交PQ于点E,交折线QB-BO-OP于点F.问:是否存在某一时刻t,使EF恰好经过原点O?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•沈阳)已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4
3
,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.
(1)求AP的长;
(2)求证:点P在∠MON的平分线上.
(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.
①当AB⊥OP时,请直接写出四边形CDEF的周长的值;
②若四边形CDEF的周长用t表示,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知P为∠AOB的平分线OP上一点,PC⊥OA于点C,∠0AP+∠0BP=180°.求证:AO+BO=2CO.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知A (0,a),B(b,0),点P为△ABO的角平分线的交点.

(1)若a、b满足|a+b|+a2-4a+4=0.求A、B的坐标;
(2)连OP,在(1)的条件下,求证:OP+OB=AB;
(3)如图2.PM⊥PA交x轴于M,PN⊥AB于N,试探究:AO-OM与PN之间的数量关系.

查看答案和解析>>

同步练习册答案