精英家教网 > 初中数学 > 题目详情

如图,一次函数的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=数学公式的图象在第二象限交与点C,如果点A为的坐标为(2,0),B是AC的中点.
(1)求点C的坐标;
(2)求一次函数的解析式.

解:∵点A的坐标为(2,0),B是AC的中点,B在y轴上,
∴点A与点C的横坐标互为相反数,即点C的横坐标为-2,
∵点C在反比例函数y=的图象上,
∴y=-=4,
∴点C的坐标为(-2,4);

(2)设一次函数的解析式y=kx+b.
∵点A(2,0),点C(-2,4)在直线y=kx+b上,

解得
∴一次函数的解析式y=-x+2.
分析:(1)先根据点A的坐标为(2,0),B是AC的中点,B在y轴上,得出点C的横坐标为-2,再将x=-2代入y=,求出y=4,即可得到点C的坐标;
(2)设一次函数的解析式y=kx+b,将点A、点C的坐标代入,运用待定系数法即可求出一次函数的解析式.
点评:本题考查了反比例函数与一次函数的交点问题,运用待定系数法确定函数的解析式,这是常用的一种解题方法.同学们要熟练掌握这种方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
12x
的图象和一次函数y=kx-7的图象都经过点P(m,2).
(1)求这个一次函数的解析式;
(2)如果等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,两底AD、BC与y轴平行,且A和B的横坐标分别为a、b(b>a>0),求代数式ab的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数y1= –  ( x<0)的图象相交于A点,与y轴、x轴分别相交于BC两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.

(1)    求一次函数的解析式;

(2)    设函数y2=  (x>0)的图象与y1= –  (x<0)的图象关于y轴对称.在y2=  (x>0)的图象上取一点PP点的横坐标大于2),过PPQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数(x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0),当x<-1时,一次函数值大于反比例函数值,当x>-1时,一次函数值小于反比例函数值.

(1)求一次函数的解析式;

(2)设函数(x>0)的图象与(x<0)的图象关于y轴对称,在(x>0)的图象上取一点P(P点的横坐标大于2),过P点作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

解答:

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数y1= – ( x<0)的图象相交于A点,与y轴、x轴分别相交于BC两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.

(1)   求一次函数的解析式;

(2)   设函数y2= (x>0)的图象与y1= – (x<0)的图象关于y轴对称.在y2= (x>0)的图象上取一点PP点的横坐标大于2),过PPQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数y1= – ( x<0)的图象相交于A点,与y轴、x轴分别相交于BC两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.

(1)   求一次函数的解析式;

(2)   设函数y2= (x>0)的图象与y1= – (x<0)的图象关于y轴对称.在y2= (x>0)的图象上取一点PP点的横坐标大于2),过PPQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案