精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,D是AB的中点,DE⊥AB交BC于E,M、N分别是AC、BC上的点,且DN⊥DM.
(1)求证:△DNE∽△MDA;
(2)若AC=6,BC=8,求tan∠DMN的值.

解:(1)∵DE⊥AB,DN⊥DM,
∴∠EDN+∠EDM=∠EDM+∠ADM=90°,
∴∠EDN=∠ADM,
∵DE⊥AB,∠C=90°,
∴∠NED+∠DEC=∠A+∠DEC=180°,
∴∠NED=∠A,
∴△DNE∽△MDA …

(2)∵△DNE∽△MDA,

∵D是AB的中点,

又∵∠B=∠B,
∴Rt△BDE∽Rt△BCA,


在Rt△MDN中,tan∠DMN===.…
分析:(1)由DE⊥AB,DN⊥DM,根据同角的余角相等,即可得∠EDN=∠ADM,又由DE⊥AB,∠C=90°,根据同角的补角相等,即可得∠NED=∠A,根据由两角对应相等的三角形相似,即可证得△DNE∽△MDA;
(2)由△DNE∽△MDA,D是AB的中点,根据相似三角形的对应边成比例,易得,即可证得Rt△BDE∽Rt△BCA,由AC=6,BC=8,即可求得tan∠DMN的值.
点评:此题考查了相似三角形的判定与性质、直角三角形的性质以及余角补角的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案