精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,∠ACB=90°,AC=BC,AE⊥CE于E,BF⊥CE于F.
(1)求证:CF=AE;
(2)试判断线段EF、AE、BF之间的关系。

证明:(1)∵AC⊥CE,BD⊥DF,
∴∠E=∠BFC=90°,
∴∠FBC+∠BCF=90°.
又∵∠ACB=90°,
∴∠ACE+∠BCF=90°,
∴∠ACE=∠FBC.
在△ACE与△CBF中,
∴△ACE≌△CBF (AAS)    

∴AE=CF,CE=BF.
(2)∵CE=CF+EF,CE=BF,CF=AE,
∴BF=AE+EF.

练习册系列答案
  • 课课练与单元测试系列答案
  • 世纪金榜小博士单元期末一卷通系列答案
  • 单元测试AB卷台海出版社系列答案
  • 黄冈新思维培优考王单元加期末卷系列答案
  • 名校名师夺冠金卷系列答案
  • 小学英语课时练系列答案
  • 培优新帮手系列答案
  • 天天向上一本好卷系列答案
  • 小学生10分钟应用题系列答案
  • 课堂作业广西教育出版社系列答案
  • 年级 高中课程 年级 初中课程
    高一 高一免费课程推荐! 初一 初一免费课程推荐!
    高二 高二免费课程推荐! 初二 初二免费课程推荐!
    高三 高三免费课程推荐! 初三 初三免费课程推荐!
    相关习题

    科目:初中数学 来源: 题型:

    34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
    求证:∠B=∠C.

    查看答案和解析>>

    科目:初中数学 来源: 题型:

    (2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
    (1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
    (2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

    查看答案和解析>>

    科目:初中数学 来源: 题型:

    已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
    (1)作出边AC的垂直平分线DE;
    (2)当AE=BC时,求∠A的度数.

    查看答案和解析>>

    科目:初中数学 来源: 题型:解答题

    已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
    求证:∠B=∠C.

    查看答案和解析>>

    科目:初中数学 来源:专项题 题型:证明题

    已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
               ∠1=∠2;
    求证:∠B=∠C

    查看答案和解析>>

    同步练习册答案