精英家教网 > 初中数学 > 题目详情
19、在△ABC中,已知∠A+∠B=∠C,试证明△ABC是直角三角形.
分析:先根据三角形内角定理,可得∠A+∠B+∠C=180°①,再把已知条件∠A+∠B=∠C整体代入①,即可求出∠C=90°,从而得证.
解答:证明:∵在△ABC中,∠A+∠B+∠C=180°,
又∵∠A+∠B=∠C,
∴∠C+∠C=180°,
∴2∠C=180°,
∴∠C=90°,
∴△ABC是直角三角形.
点评:本题利用了三角形内角和定理、整体代入求值、解一元一次方程的知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、(1)在△ABC中,已知∠B=∠C+20°,∠A+∠B=140°,求△ABC的各个内角的度数是多少?
(2)如图,将△ABC纸片沿MN折叠所得的粗实线围成的图形的面积与原△ABC的面积之比为3:4,且图中3个阴影三角形的面积之和为12cm2,则重叠部分的面积为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•雅安)在△ABC中,已知∠A、∠B都是锐角,且sinA=
3
2
,tanB=1,则∠C的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知∠A=80°,则∠B、∠C的角平分线相交所成的钝角为
130°
130°

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分线MN交AC于D.在下列结论中:①∠C=72°;②BD是∠ABC的平分线;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.上述结论中,正确的有
①②④⑤
①②④⑤
.(填写序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知∠A=∠C-∠B,且∠A=70°,则∠B的度数=
20°
20°

查看答案和解析>>

同步练习册答案