精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,A,B两点在函数数学公式的图象上,其中k1>0.AC⊥y轴于点C,BD⊥x轴于点D,且AC=1.

(1)若k1=2,则AO的长为______,△BOD的面积为______;
(2)如图1,若点B的横坐标为k1,且k1>1,当AO=AB时,求k1的值;
(3)如图2,OC=4,BE⊥y轴于点E,函数数学公式的图象分别与线段BE,BD交于点M,N,其中0<k2<k1.将△OMN的面积记为S1,△BMN的面积记为S2,若S=S1-S2,求S与k2的函数关系式以及S的最大值.

解:(1)∵AC=1,k1=2,点A在反比例函数y=的图象上,
∴y==2,即OC=2,
∴AO==
∵点B在反比例函数y=的图象上,BD⊥x轴,
∴△BOD的面积为1.

(2)∵A,B两点在函数C1:y=(x>0)的图象上,
∴点A,B的坐标分别为(1,k1),(k1,1).
∵AO=AB,
由勾股定理得AO2=1+k12,AB2=(1-k12+(k1-1)2
∴1+k12=(1-k12+(k1-1)2
解得k1=2+或k1=2-
∵k1>1,
∴k1=2+

(3)∵OC=4,
∴点A的坐标为(1,4).
∴k1=4.
设点B的坐标为(m,),
∵BE⊥y轴于点E,BD⊥x轴于点D,
∴四边形ODBE为矩形,且S四边形ODBE=4,
点M的纵坐标为,点N的横坐标为m.
∵点M,N在函数C2:y=(x>0)的图象上,
∴点M的坐标为(),点N的坐标为(m,).
∴S△OME=S△OND=
∴S2=BM•BN=(m-)(-)=
∴S=S1-S2=(4-k2-S2)-S2=4-k2-2S2
∴S=4-k2-2×=-k22+k2
其中0<k2<4.
∵S=-k22+k2=-k2(k2-1)2,而-<0,
∴当k2=2时,S的最大值为1.
故答案为:,1.
分析:(1)把k1=2,AC=1代入反比例函数的解析式求出A点坐标,再根据勾股定理求出OA的长;根据反比例函数图象上点的坐标特点可直接得出△BOD的面积;
(2)由于A,B两点在函数C1:y=(x>0)的图象上,故点A,B的坐标分别为(1,k1),(k1,1),再由AO=AB,可根据由勾股定理得出AO2=1+k12,AB2=(1-k12+(k1-1)2,再求出k1的值即可;
(3))先根据OC=4得出点A的坐标,故可得出k1的值,设点B的坐标为(m,),因为BE⊥y轴于点E,BD⊥x轴于点D,所以四边形ODBE为矩形,且S四边形ODBE=4,再由点M的纵坐标为,点N的横坐标为m.点M,N在函数C2:y=(x>0)的图象上可知点M的坐标为(),点N的坐标为(m,).所以S△OME=S△OND=,S2=BM•BN,再由S=S1-S2可得出关于k2的解析式,由其中0<k2<4即可得出结论.
点评:本题考查的是反比例函数综合题,此题涉及到勾股定理、反比例函数图象上点的坐标特点及二次函数的最值问题等相关知识,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=-
4
9
(x-2)2
+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=
2
5
5

(1)求此抛物线的函数表达式;
(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若
HE
HF
=
1
2
时,求点P的坐标;
(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG与△ADM相似?若存在,求出所有符合条件的精英家教网直线QG的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在平面直角坐标系xOy中,已知抛物线y=ax2-2ax+b与x轴的一个交点为A(-1,0),另一个交精英家教网点B在A点的右侧;交y轴于(0,-3).
(1)求这个二次函数的解析式;
(2)设抛物线的顶点为C,抛物线上一点D的坐标为(-3,12),在x轴上是否存在一点P,使以点P、B、C为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴、y轴正半轴交于点M、N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC边落在x轴的正半轴上,点A恰好落在线段MN上,如图2,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB、AC分别与线段MN交于点E、F,在△ABC平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s),△PEF的面积为S(cm2).
(1)求等边△ABC的边长;
(2)当点P在线段BA上运动时,求S与t的函数关系式,并写出自变量t的取值范围;
(3)点P沿折线B→A→C运动的过程中,是否在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•卢湾区一模)如图,已知在平面直角坐标系xoy中,抛物线y=ax2+bx+c(a>0)与x轴相交于A(-1,0),B(3,0)两点,对称轴l与x轴相交于点C,顶点为点D,且∠ADC的正切值为
12

(1)求顶点D的坐标;
(2)求抛物线的表达式;
(3)F点是抛物线上的一点,且位于第一象限,连接AF,若∠FAC=∠ADC,求F点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在等腰直角三角板ABC中,斜边BC为2个单位长度,现把这块三角板在平面直角坐标系xOy中滑动,并使B、C两点始终分别位于y轴、x轴的正半轴上,直角顶点A与原点O位于BC两侧.
(1)取BC中点D,问OD+DA是否发生改变,若会,说明理由;若不会,求出OD+DA;
(2)你认为OA的长度是否会发生变化?若变化,那么OA最长是多少?OA最长时四边形OBAC是怎样的四边形?并说明理由;
(3)填空:当OA最长时A的坐标(
2
2
2
2
),直线OA的解析式
y=x
y=x

查看答案和解析>>

同步练习册答案