精英家教网 > 初中数学 > 题目详情

一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示:
(1)求y与x之间的函数关系式;
(2)“E”图案的面积是多少?
(3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围.

解:(1)设函数关系式为
∵函数图象经过(10,2)

∴k=20,

∵0<x<16,0<y<16,
∴0<x<16,0<<16,
<x<16;

(2)∵
∴xy=20,
∴SE=S=162-2×20=216;

(3)当x=6时,
当x=12时,
∴小矩形的长是6≤x≤12cm,小矩形宽的范围为
分析:(1)根据图象信息利用待定系数法可以确定函数解析式;
(2)根据(1)的函数关系式可以知道小矩形的面积,从而可以求出“E”图案的面积;
(3)根据(1)的函数关系式可以确定小矩形的宽的取值范围.
点评:此题主要考查了利用待定系数法确定函数的解析式,也考查了利用函数的性质求点的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•和平区二模)把一张长为20cm,宽为16cm的矩形硬纸板的四周各剪去一个同样大小的正方形(如图1),再折叠成一个无盖的长方体盒子(纸板的厚度忽略不计,如图2).设剪去的正方形边长为x(cm),x为正整数.折成的长方体盒子底面积为y(cm2).
(1)求y与x之间的函数关系式;
(2)折叠成的长方体盒子底面积是否有最大值?若有,请求出最大值,若没有,说明理由;
(3)你认为折叠成的无盖长方体盒子的侧面积有可能是192cm2吗?若能,请求出此时x的值,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

把一张长为20cm,宽为16cm的矩形硬纸板的四周各剪去一个同样大小的正方形(如图1),再折叠成一个无盖的长方体盒子(纸板的厚度忽略不计,如图2).设剪去的正方形边长为x(cm),x为正整数.折成的长方体盒子底面积为y(cm2).
(1)求y与x之间的函数关系式;
(2)折叠成的长方体盒子底面积是否有最大值?若有,请求出最大值,若没有,说明理由;
(3)你认为折叠成的无盖长方体盒子的侧面积有可能是192cm2吗?若能,请求出此时x的值,若不能,请说明理由.

查看答案和解析>>

同步练习册答案