精英家教网 > 初中数学 > 题目详情

已知正方形ABCD对角线AC,BD相交于点O,且AC=16cm,则DO=________cm,BO=________cm,∠OCD=________度.

8    8    45
分析:正方形的对角线相等且互相平分,且AC=16cm,那么DO=AC=8=BO,∠OCD=45°.
解答:∵正方形ABCD,AC=16cm
∴DO=AC=8=BO
∠OCD=45°.
故答案为8,8,45.
点评:本题考查正方形对角线相等平分垂直的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小杰和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:
“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH“
经过思考,大家给出了以下两个方案:
(甲)过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;
(乙)过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N;
小杰和他的同学顺利的解决了该题后,大家琢磨着想改变问题的条件,作更多的探索.

(1)对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图1);
精英家教网
(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图2),试探究EG、FH之间有怎样的数量关系,并证明你的结论;
(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为
5
2
(如图3),试求EG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•河北)命题:如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.
对上述命题证明如下:
∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,BO=AO.
又∵AG⊥EB,
∴∠1+∠3=90°=∠2+∠3.
∴∠1=∠2
∴Rt△BOE≌Rt△AOF.
∴OE=OF
问题:对上述命题,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,其它条件不变(如图2),则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明现由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•保定一模)已知正方形ABCD的边长为4,E是边CD上的一个动点,以CE为一条直角边作等腰直角三角形CEF,连接BF、FD、BD,则BD与CF的位置关系式
BD∥CF
BD∥CF

(1)如图1,当CE=4(即点E与点D重合)时,△BDF的面积为
8
8

(2)如图2,当CE=2(即点E为CD的中点)时,△BDF的面积为
8
8

(3)如图3,当CE=3时,△BDF的面积为
8
8


(4)如图4,根据上述计算结果,当E是CD边上任意一点时,请提出你对△BDF面积与正方形ABCD的面积之间关系的猜想;并证明你的猜想.
(5)如图5,若E是CD延长线上任意一点时,请你判断(4)中的结论是否仍然成立.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD,将一块等腰直角三角尺的锐角顶点与A重合,并将三角尺绕点旋转,如图1,使它的斜边与BC交于点E,一条直角边与CD交于点F(E、F不与B、D重合),AE、AF分别与BD交于P、Q两点.
(1)求证:△ABP∽△ACF,且相似比为1:
2

(2)请再在图1中(不再添线和加注字母)找出两对相似比为1:
2
的非直角三角形的相似三角形;(直接写出)
(3)如图2,当M点旋转到BC的垂直平分线PQ上时,连接ON,若ON=8,求MQ的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

某课外活动小组对课本上的一道习题学习后,进行了拓展应用:
(1)如图1,是在直线l上找一点P,使得PA+PB最短(画图即可).
(2)如图2,应用:已知正方形ABCD中,E为AB的中点,在线段BD上找一点P,使得PA+PE的值最小,并说明理由.
(3)探索:E为正方形ABCD的AB边的中点,如图3,M为BC上一点,N为CD上一点,连接EM,MN,NA,请你应用(1)的原理在图2中找出点M,N,使得EM+MN+NA的值最小,画图即可.

查看答案和解析>>

同步练习册答案