如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.
求证:BE=DE.
|
分析:作CF⊥BE,垂足为F,得出矩形CFED,求出∠CBF=∠A,根据AAS证△BAE≌△CBF,推出BE=CF即可. 解答:证明:作CF⊥BE,垂足为F, ∵BE⊥AD, ∴∠AEB=90°, ∴∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°, ∴∠BAE=∠CBF, ∴四边形EFCD为矩形, ∴DE=CF, 在△BAE和△CBF中,有∠CBE=∠BAE,∠BFC=∠BEA=90°,AB=BC, ∴△BAE≌△CBF, ∴BE=CF=DE, 即BE=DE.
点评:本题考查了全等三角形的性质和判定,矩形的判定和性质的应用,关键是求出△BAE≌△CBF,主要考查学生运用性质进行推理的能力. |
|
全等三角形的判定与性质;矩形的判定与性质 |
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com