精英家教网 > 初中数学 > 题目详情

已知:如图,点C为线段AB延长线上一点,△AMC,△BNC是等边三角形,且在线段AB的同侧.求证:AN=MB.

答案:略
解析:

证明:∵△AMC、△BNC是等边三角形,

AC=MCNC=BC

在△ACN和△MCB中,

∴△CAN≌△MCB(SAS)

AN=MB


提示:

欲证AN=MB,通过观察图形,可证明ANMB所在的△ACN和△MCB全等.由于△AMC、△BNC是等边三角形,∴有AC=MCNC=BC,又∵∠C为两个三角形的公共角,故证三角形全等的条件已具备.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,点E为?ABCD对角线AC上的一点,点F在BE的延长线上,且EF=BE,EF与CD相交于点G.
求证:DF∥AC.
(请用两种方法证明,可以添辅助线,可以不添辅助线,如果两种方法都添辅助线,要求是不同位置的线.)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

26、已知:如图,点O为直线AB上一点,过点O在直线AB的同侧作射线OD、OC、OE,且OD是∠AOC的平分线,∠DOE=90°,请判断OE是否是∠BOC的平分线,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点P为线段AB上的动点(与A、B两点不重合).在同一平面内,把线段AP、BP分别折成△CDP、△EFP,其中∠CDP=∠EFP=90°,且D、P、F三点共线.若△CDP、△EFP均为等腰三角形,且DF=2,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,点E为?ABCD对角线AC上的一点,点F在BE的延长线上,且EF=BE,EF与CD相交于点G.
求证:DF∥AC.
(请用两种方法证明,可以添辅助线,可以不添辅助线,如果两种方法都添辅助线,要求是不同位置的线.)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,点O为直线AB上一点,过点O在直线AB的同侧作射线OD、OC、OE,且OD是∠AOC的平分线,∠DOE=90°,请判断OE是否是∠BOC的平分线,并说明理由.

查看答案和解析>>

同步练习册答案