精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠ACB=90°,∠A=30°,D在AC上,以DC为直径的半圆O切AB于E.F在CE上,CF:EF=1:3,OF=1,求BC的长.

解:连接OE,过O作OH⊥CE于H,
∴EH=CH,
∵CF:EF=1:3,
∴FH=CF,
∵AB是⊙O的切线,
∴OE⊥AB,
即∠AEO=90°,
∵∠A=30°,
∴∠EOA=60°,
∵OE=OC,
∴∠OEC=∠OCE=∠EOA=30°,
设OH=x,
则OC=2x,CH=OC•cos∠OCE=x,
∴FH=x,
在Rt△OFH中,OF2=OH2+FH2
即1=x2+(x)2
解得:x=
∴OE=OC=
∴OA=2OE=
∴AC=
∴BC=AC•tan∠A=×=
分析:首先连接OE,过O作OH⊥CE于H,由垂径定理与CF:EF=1:3,易得FH=CF,又由在Rt△ABC中,∠ACB=90°,∠A=30°,AB是⊙O的切线,易求得∠OCE=30°,然后设OH=x,利用勾股定理,即可得方程,解此方程即可求得OC的长,继而求得答案.
点评:此题考查了切线的性质、垂径定理、勾股定理、含30°角的直角三角形的性质以及三角函数的知识.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案