精英家教网 > 初中数学 > 题目详情
7.下列图形中,既是轴对称图形,又是中心对称图形的是(  )
A.B.C.D.

分析 根据轴对称图形和中心对称图形对各选项分析判断即可得解.

解答 解:A、不是轴对称图形,是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、既是轴对称图形,又是中心对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.

点评 本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y).
(1)如图①,若∠AOB=90°,求y的值;
(2)如图②,若有AO=AB,则y的值为±2$\sqrt{6}$
(3)如图③,若在x轴上有一点C(x,0)且-1<x<3,BC⊥AC垂足为点C;若AB与y轴正半轴的所夹锐角为α,则tanα是否存在最大值?如果存在,直接写出这个最大值,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.边长为a的正方形ABCD在平面直角坐标系中的位置如图所示,其中AB与x轴平行(点B在点A的右侧),点A的坐标为(2,1),反比例函数y=$\frac{m}{x}$经过点C,直线l:y=kx-2(k≠0)与y轴交于点E.
(1)当a=2时,试完成下面的问题:
①求反比例函数的解析式;
②当直线l把正方形ABCD分为面积相等的两部分时,求k的值;
(2)若k=2,当直线l与正方形ABCD的边CD能相交(设交点为F),且DF不超过3时,直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.不等式组 $\left\{{\begin{array}{l}{\frac{x+1}{2}<1}\\{2x-1≤3x}\end{array}}\right.$的整数解的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是(  )
A.AO=OCB.AC=BDC.AC⊥BDD.BD平分∠ABC

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,矩形ABCD中,AB=10,BC=8,P为AD的中点,将△ABP沿BP翻折至△EBP(点A落到点E处),连接DE,则图中与∠APB相等的角的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,是皖韵水库进入5月份以来的水位y米与x日的函数图象,为了避免过度捕捞,当水位低于3米时就不适宜渔船打捞作业,根据图象可知,5月份能打捞的天数有(  )天.
A.11B.12C.13D.14

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在物理实验中,当电流在一定时间段内正常通过电子元件时,每个电子元件的状态有两种可能;通电或断开,并且这种状态的可能性相等.
(1)如图1,当有2个电子元件a、b并联时,请你用树状图表示图中P、Q之间电流能否通过的所有可能情况,并求出P、Q之间有电流通过的概率;
(2)如图2,当有3个电子元件并联时,求P、Q之间有电流通过的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,O是坐标原点,直线y=-$\frac{3}{4}$x+9与x轴,y轴分别交于B,C两点,抛物线y=-$\frac{1}{4}$x2+bx+c经过B,C两点,与x轴的另一个交点为点A,动点P从点A出发沿AB以每秒3个单位长度的速度向点B运动,运动时间为t(0<t<5)秒.
(1)求抛物线的解析式及点A的坐标;
(2)在点P从点A出发的同时,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C运动,动点N从点C出发沿CA以每秒$\frac{3\sqrt{10}}{5}$个单位长度的速度向点A运动,运动时间和点P相同.
①记△BPQ的面积为S,当t为何值时,S最大,最大值是多少?
②是否存在△NCQ为直角三角形的情形?若存在,求出相应的t值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案