精英家教网 > 初中数学 > 题目详情

如图,二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),交y轴于C(0,-2),过B、C画直线.
(1)求二次函数的解析式;
(2)点P在x轴负半轴上,且PB=PC,求OP的长;
(3)点M在二次函数图象上,过M向直线BC作垂线,垂足为H.若M在y轴左侧,且△CHM∽△BOC,求点M的坐标.

解:(1)∵二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),
∴设该二次函数的解析式为:y=a(x+2)(x-1),
将x=0,y=-2代入,得-2=a(0+2)(0-1),
解得a=1,
∴抛物线的解析式为y=(x+2)(x-1),即y=x2+x-2;

(2)如图1.由(1)知,抛物线的解析式为y=x2-x-2,则C(0,-2).
设OP=x,则PB=PC=x+1,
在Rt△POC中,由勾股定理,得x2+22=(x+1)2
解得,x=,即OP=

(3)∵△CHM∽△BOC,
∴∠MCH=∠CBO.
(i)如图2,当点H在点C上方时.
由(2)知,PB=PC,
∴∠PCB=∠CBP,即∠PCB=∠CBO.
又∵∠MCH=∠CBO,即∠MCB=∠CBO,
∴∠PCB=∠MCB,
∴点M是线段CP的延长线与抛物线的交点.
设直线CM的解析式为y=kx-2(k≠0),
把P(-,0)代入,得-k-2=0,
解得,k=-,则直线CM的解析式是y=-x-2,

解得,(舍去),或
∴M(-);
(ii)如图3,点H在点C下方时.
∵∠MCH=∠CBO,
∴CM∥x轴,
∴yM=-2,
∴x2+x-2=-2,
解得x1=0(舍去),x2=-1
∴M(-1,-2).
综上所述,点M的坐标是M(-)或M(-1,-2).
分析:(1)根据与x轴的两个交点A、B的坐标,设出二次函数交点式解析式y=a(x+2)(x-1),然后把点C的坐标代入计算求出a的值,即可得到二次函数解析式;
(2)设OP=x,然后表示出PC、PB的长度,在Rt△POC中,利用勾股定理列式,然后解方程即可;
(3)根据相似三角形对应角相等可得∠MCH=∠CAO.
(i)当点H在点C上方时,根据(2)的结论,点M为直线PC与抛物线的另一交点,求出直线PC的解析式,与抛物线的解析式联立求解即可得到点M的坐标;
(ii)当点H在点C下方时,利用同位角相等,两直线平行判定CM∥x轴,从而得到点M的纵坐标与点C的纵坐标相同,是-2,代入抛物线解析式计算即可.
点评:本题是对二次函数的综合考查,主要利用了待定系数法求二次函数解析式,勾股定理,相似三角形的性质,两函数图象交点的求解方法,综合性较强,难度较大,要注意分情况讨论求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,二次函数的图象经过点D(0,
7
9
3
),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数图象的顶点为坐标原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).
(1)求二次函数与一次函数的解析式;
(2)如果一次函数图象与y相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于点A(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:
(1)求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达30万元;
(3)从第几个月起公司开始盈利?该月公司所获利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b
0(填“>”、“<”、“=”);
(2)当x满足
x<-4或x>2
x<-4或x>2
时,ax2+bx+c>0;
(3)当x满足
x<-1
x<-1
时,ax2+bx+c的值随x增大而减小.

查看答案和解析>>

同步练习册答案