精英家教网 > 初中数学 > 题目详情

在“角”、“等腰三角形”、“不等边三角形”三个图形中, 是轴对称图形的有________

答案:等腰三角形、角
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

操作实验:
精英家教网
如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.
所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.
根据上述内容,回答下列问题:
思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由;
精英家教网精英家教网
探究应用:如图(5),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD.
(1)BE与AD是否相等,为什么?
(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;
(3)∠DBC与∠DCB相等吗试?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=
底边
=
BC
AB
.容易知道一个角的大小与这个角的正对值也是相精英家教网互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)sad 60°的值为( B )
A.
1
2
;B.1;C.
3
2
;D.2
(2)对于0°<A<180°,∠A的正对值sad A的取值范围是
 

(3)已知sinα=
3
5
,其中α为锐角,试求sadα的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区一模)通过学习锐角三角比,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,AB=AC,底角B的邻对记作canB,这时canB=
底边
=
BC
AB
,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:
(1)can30°=
3
3

(2)如图(2),已知在△ABC中,AB=AC,canB=
8
5
,S△ABC=24,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•宝山区一模)通过锐角三角比的学习,我们已经知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长比与角的大小之间可以相互转化.类似的我们可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图在△ABC中,AB=AC,
顶角A的正对记作sadA,这时sadA=
底边
=
BC
AB
.我们容易知道一个角的大小与这个角的正对值也是互相唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°=
1
1
;sad90°=
2
2

(2)对于0°<A<180°,∠A的正对值sadA的取值范围是
0<sadA<2
0<sadA<2

(3)试求sad36°的值.

查看答案和解析>>

科目:初中数学 来源:2011届北京市昌平区初三上学期期末考试数学卷 题型:解答题

教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:

(1)sad 的值为( ▼ )

A.B.1 C.D.2
(2)对于,∠A的正对值sad A的取值范围是  ▼   .
(3)已知,其中为锐角,试求sad的值.

查看答案和解析>>

同步练习册答案