精英家教网 > 初中数学 > 题目详情
11.已知m2+n2=3,mn=-1,求多项式5m2-3mn-7n2+12mn-7m2+5n2的值.

分析 先把多项式化简,多项式化简后含有m2+n2、mn,考虑用整体代入的办法求解.

解答 解:5m2-3mn-7n2+12mn-7m2+5n2
=-2m2-2n2+9mn
=-2(m2+n2)+9mn
当m2+n2=3,mn=-1时,
原式=-2×3+9×(-1)
=-6-9
=-15.

点评 本题考查了多项式的加减和化简求值.解决本题的关键是化简多项式后,把m2+n2、mn当做整体进行代入.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.已知a、b满足$\sqrt{2a+8}$+|b-$\sqrt{3}$|=0,则关于x的方程(a+2)x2+bx=a-1的解是x1=$\frac{\sqrt{3}+\sqrt{43}}{4}$,x2=$\frac{\sqrt{3}-\sqrt{43}}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,C为射线AB上一点,AB=30,AC比BC的$\frac{1}{4}$多5,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的中点,N为QM的中点,以下结论:
①BC=2AC;②AB=4NQ;③当PB=$\frac{1}{2}$BQ时,t=12,其中正确结论的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.将下列推理过程填写完整.
(1)如图1,已知∠B+∠BED+∠D=360°,求证AB∥CD.
证明:过E点作EF∥CD(过直线外一点有且只有一条直线与已知直线平行)
∵EF∥CD,
∴∠D+∠DEF=180°,(两直线平行,同旁内角互补)
∵∠B+∠BED+∠D=360°,(已知)
∴∠B+∠BEF=∠B+∠BED+∠D-(∠D+∠DEF)=360°-180°=180°
∴EF∥AB,(同旁内角互补,两直线平行)
∴AB∥CD,(平行于同一直线的两直线平行)
(2)如图2,已知∠BED=∠B+∠D,求证AB∥CD.
证明:过E点作EF∥CD(过直线外一点有且只有一条直线与已知直线平行)
∵EF∥CD,
∴∠D=∠FED,(两直线平行,内错角相等)
∵∠BED=∠B+∠D(已知)
∴∠B=∠BEF-∠D=∠BED-∠FED=∠BEF,
∴AB∥EF,(内错角相等,两直线平行)
∴AB∥CD.(平行于同一直线的两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是(  )
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6
C.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上
D.用2、3、4三个数字随机排成一个三位数,排出的数是偶数

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.若已知点P1(-1,3)和P2(1,b),且P1P2平行于x轴,则b=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.若2m-4和3m-1都是某个正数的平方根,试求这个正数的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产记为正、减产记为负):
星期
增减+5-2-4+12-10+16-9
(1)根据记录的数据可知该厂星期六生产自行车多少辆?
(2)产量最多的一天比产量最少的一天多生产多少辆自行车?
(3)求该厂本周实际生产自行车多少辆?

查看答案和解析>>

同步练习册答案