解:(1)由已知A(0,6),B(6,6)在抛物线上,
得方程组

,
解得

.

(2)①运动开始t秒时,EB=6-t,BF=t,
S=

EB•BF=

(6-t)t=-

t
2+3t,
以为S=-

t
2+3t=-

(t-3)
2+

,
所以当t=3时,S有最大值

.
②当S取得最大值时,
∵由①知t=3,
∴BF=3,CF=3,EB=6-3=3,
若存在某点R,使得以E,B,R,F为顶点的四边形是平行四边形,
则FR
1=EB且FR
1∥EB,
即可得R
1为(9,3),R
2(3,3);
或者ER
3=BF,ER
3∥BF,可得R
3(3,9).
再将所求得的三个点代入y=-

x
2+

x+6,可知只有点(9,3)在抛物线上,
因此抛物线上存在点R(9,3),使得四边形EBRF为平行四边形.
分析:(1)由于四边形OABC是正方形,易知点A的坐标,将A、B的坐标分别代入抛物线的解析式中,联立3a-b=-1,即可求得待定系数的值.
(2)①用t分别表示出BE、BF的长,利用直角三角形面积公式求出△EBF的面积,从而得到关于S、t的函数关系式,根据函数的性质即可求得S的最大值;
②当S取最大值时,即可确定BE、BF的长,若E、B、R、F为顶点的四边形是平行四边形,可有两种情况:一、EB平行且相等于FR,二、ER平行且相等于FB;只需将E点坐标向上、向下平移BF个单位或将F点坐标向左、向右平移BE个单位,即可得到R点坐标,然后将它们代入抛物线的解析式中进行验证,找出符合条件的R点即可.
点评:此题主要考查了正方形的性质、二次函数解析式的确定、图形面积的求法、二次函数的最值、平行四边形的判定和性质等,同时还考查了分类讨论的数学思想,难度适中.