精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD中,E是BC边上一点,以E为圆心、EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则S四边形ADCE:S正方形ABCD的值为________.


分析:过点E作EF垂直于AD,交AD于点F,设EC=x,AB=y,由ABCD为正方形得到四条边相等,四个角为直角,利用三个角为直角的四边形为矩形得到DCEF为矩形,根据矩形的性质得到CE=DF,EF=DC,由AD-DF=AD-EC=y-x,再由两半圆外切,得到两圆心距等于两半径相加,可得出AE=x+y,在直角三角形AEF中,利用勾股定理列出关系式,整理后得到y=4x,由四边形AECD为直角梯形,利用直角梯形的面积公式表示出梯形AECD的面积,再利用正方形的面积公式表示出ABCD的面积,将x=y代入,整理后即可求出所求的比值.
解答:过E作EF⊥AD,交AD于点F,如图所示:
可得∠EFA=90°,
设EC=x,AB=y,
∵四边形ABCD为正方形,
∴AD=AB=BC=CD=y,∠ADC=∠DAB=∠ABC=∠BCD=90°,
∴DFEC为矩形,
∴EF=DC=y,AF=AD-DF=AD-CE=y-x,
∵圆E与圆A外切,
∴AE=x+y,
在Rt△AEF中,根据勾股定理得:AE2=EF2+AF2
即(x+y)2=y2+(y-x)2
整理得:y=4x,即x=y,
∴S梯形ADCE=(EC+AD)•CD=y(x+y)=y2,S正方形ABCD=y2
则S四边形ADCE:S正方形ABCD=y2:y2=
故答案为:
点评:此题考查了相切两圆的性质,正方形的性质,勾股定理,以及梯形、正方形面积的求法,利用了转化的数学思想,熟练掌握性质及定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案