精英家教网 > 初中数学 > 题目详情

设已知数学公式,b是a的纯小数部分,试用含b的代数式表示a,并求a-b的值.

解:∵
的整数部分是4,
∵b是a的纯小数部分,
∴a=4+b;
∴a-b的值是4.
分析:因为,所以的整数部分可求,进而求出小数部分,问题得解.
点评:此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知:AB是⊙O的直径,BC、CD分别是⊙O的切线,切点分别为B、D,E是BA和精英家教网CD的延长线的交点.
(1)猜想AD与OC的位置关系,并加以证明;
(2)设AD•OC的积为S,⊙O的半径为r,试探究S与r的关系;
(3)当r=2,sin∠E=
13
时,求AD和OC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.
如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于精英家教网点D.
(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.
(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,
DE
EF
=n
,试作出分别以
m
n
n
m
为两根且二次项系数为6的一个一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,AB是⊙O的直径,AB=8,点C在⊙O的半径OA上运动,PC⊥AB,垂足为C,PC=5,PT为⊙O的切线,切点为T.
(1)如图(1),当C点运动到O点时,求PT的长;
(2)如图(2),当C点运动到A点时,连接PO、BT,求证:PO∥BT;
(3)如图(3),设PT2=y,AC=x,求y与x的函数关系式及y的最小值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:AB是⊙O的直径,弦CD⊥AB于点G,E是直线AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P.设⊙O的半径为r.
(1)如图1,当点E在直径AB上时,试证明:OE•OP=r2
(2)当点E在AB(或BA)的延长线上时,以如图2点E的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.
精英家教网

查看答案和解析>>

同步练习册答案