精英家教网 > 初中数学 > 题目详情
5
+1
5
-1
的整数部分为x,小数部分为y,试求x2+
1
2
xy+y2
的值.
分析:
5
+1
5
-1
分母有理化,判断整数部分x,小数部分y,再代入x2+
1
2
xy+y2
求值.
解答:解:∵
5
+1
5
-1
=
(
5
+1)2
4
=
3+
5
2

而0<
5
-1
2
<1,
∴x=2,y=
5
-1
2

x2+
1
2
xy+y2
=4+
1
2
×2×
5
-1
2
+(
5
-1
2
2
=4+
5
-1
2
+
3-
5
2
=5.
点评:本题考查了二次根式的化简求值,关键是会表示式子的整数部分和小数部分.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、设m和n为大于0的整数,且3m+2n=225,如果m和n的最大公约数为15,m+n=
105

查看答案和解析>>

科目:初中数学 来源: 题型:

5月份,某品牌衬衣正式上市销售.5月1日的销售量为10件,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销量为p(件),销售日期为n(日),p与n之间的关系如图所示.
(1)写出p关于n的函数关系式p=
25n-15(1≤n≤12,且n为整数)
-15n+465(12<n≤31,且n为整数)
25n-15(1≤n≤12,且n为整数)
-15n+465(12<n≤31,且n为整数)
(注明n的取值范围);
(2)经研究表明,该品牌衬衣的日销量超过150件的时间为该品牌衬衣的流行期.请问:该品牌衬衣本月在市面的流行期是多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

将连续的奇数1,3,5,7,…,排成如下图的数表,用图中所示的十字框可任意框出5个数.
【探究规律一】:设十字框中间的奇数为a,则框中五个奇数之和用含a的代数式表示为
5a
5a

【结论】:这说明能被十字框框中的五个奇数之和一定是自然数p的奇数倍,这个自然数p是
5
5

【探究规律二】:落在十字框中间且又是第二列的奇数是15,27,39,51…则这一列数可以用代数式表示为12m+3(m为正整数),同样,落在十字框中间且又是第三列,第四列的奇数分别可表示为
12m+5,13m+7
12m+5,13m+7

【运用规律】:
(1)已知被十字框框中的五个奇数之和为6025,则十字框中间的奇数是
1025
1025
;这个奇数落在从左往右第
3
3
列.
(2)被十字框框中的五个奇数之和可能是485吗?可能是3045吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

七年级学生参加了社会实践调查活动,到生态果园调查后得到如下信息:今年收获了15吨李子和8吨桃子,要租用甲、乙两种货车共6辆,及时运往外地,经询问,甲种货车可装李子4吨和桃子1吨,乙种货车可装李子1吨和桃子3吨.根据同学们带回的信息,试探究以下问题:
(1)共有几种租车方案?
(2)经咨询运输公司,甲种货车每辆需付运费1000元,乙种货车每辆需付运费700元,试帮助选出最佳方案,并求出此方案运费是多少.
请同学们补充完成下列部分解题过程:
(1)解:
①若设租用甲车x辆,则租用乙车
(6-x)
(6-x)
辆,
②由题意可知:甲车一共可装
x
x
吨桃子,乙车一共可装
3(6-x)
3(6-x)
吨桃子,则甲,乙两种车一共可装
x+3(6-x)
x+3(6-x)
吨桃子.(用含有x的代数式表示)
请列出不等式
x+3(6-x)≥8
x+3(6-x)≥8

③甲车一共可装
4x
4x
吨李子,乙车一共可装
(6-x)
(6-x)
吨李子,则甲,乙两种车一共可装
4x+(6-x)
4x+(6-x)
吨李子.(用含有x的代数式表示)
请列出不等式
4x+(6-x)≥15
4x+(6-x)≥15

④请列出不等式组,并求出满足不等组的整数解,写出相应的方案
(2)解:

查看答案和解析>>

同步练习册答案