精英家教网 > 初中数学 > 题目详情

若一个△ABC的三个点的纵坐标不变,横坐标都扩大为原来的3倍后得到的△,则这两个三角形的关系是

[  ]

A.纵向拉长为原来的3倍,横向不变;

B.横向拉长为原来的3倍,纵向不变;

C.横向、纵向都拉长为原来的3倍;

D.横向、纵向都未发生变化.

答案:B
解析:

纵坐标不变则纵向大小不变;横坐标都扩大为原来的3倍则横向大小为原来的3倍.选B.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、(1)如图,方格纸中的△ABC的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.
在图①中画出与△ABC全等且有一个公共顶点的格点△A′B′C′;
在图②中画出与△ABC全等且有一条公共边的格点△A″B″C″.


(2)先阅读然后回答问题:
如图,D是△ABC中BC边上一点,E是AD上一点,AB=AC,EB=EC,∠BAE=∠CAE,试说明△4EB丝AAEC.
解:在△ABE和△AEC中,

因为AB=AC,∠BAE=∠CAE,EB=EC,…第1步
根据“SAS”可以知道△ABE≌△AEC.…第2步
请问上面解题过程正确吗?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=a(x-1)2-
4
3
3
经过△ABC的三个顶点,已知点A(-1,0),点C在y轴上,且BC∥x轴.
(1)求a的值;
(2)判断△ABC的形状,并说明理由;
(3)探究:
①若点P是抛物线对称轴上的一个动点,求△PAC周长的最小值;
②若点P是抛物线对称轴且在直线BC上方的一个动点,是否存在点P使△PAB是等腰三角形.若存在,直接写出所有符合条件的点P坐标;不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形网格中,每一个小正方形的边长都是1,△ABC的三个顶点都在格点(每个小正方形的顶点)上,O为AC的中点,若把△ABC绕点O顺时针旋转90°.
(1)画出△ABC旋转后的图形;
(2)求点B所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)设点P是抛物线(第一象限内)上的一个动点,是否存在一点P,使S△PAB=S△CAB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案