精英家教网 > 初中数学 > 题目详情

如图,在Rt△AOB中,O为坐标原点,∠AOB=90°,∠B=30°.若点A在反比例函数y=数学公式(x>0)的图象上运动,点B在反比例函数y=数学公式(x>O)的图象上运动,则k=________.

-3
分析:如图分别过A、B作AC⊥y轴于C,BD⊥y轴于D.设A(a,b),则ab=1.根据两角对应相等的两三角形相似,得出△OAC∽△BOD,由相似三角形的对应边成比例,则BD、OD都可用含a、b的代数式表示,从而求出BD•OD的积,进而得出结果.
解答:解:分别过A、B作AC⊥y轴于C,BD⊥y轴于D.设A(a,b).
∵点A在反比例函数y=(x>0)的图象上,
∴ab=1.
在△OAC与△BOD中,∠AOC=90°-∠BOD=∠OBD,∠OCA=∠BDO=90°,
∴△OAC∽△BOD,
∴OC:BD=AC:OD=OA:OB,
在Rt△AOB中,∠AOB=90°,∠B=30°,
∴OA:OB=1:
∴b:BD=a:OD=1:
∴BD=b,OD=a,
∴BD•OD=3ab=3,
又∵点B在第四象限,
∴k=-3.
故答案为:-3.
点评:本题考查的是反比例函数综合题,涉及到相似三角形的判定与性质、反比例函数图象上点的坐标特点等知识,根据题意作出辅助线,构造出相似三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以点O为坐标原点建立坐标系,设P、Q精英家教网分别为AB、OB边上的动点它们同时分别从点A、O向B点匀速运动,速度均为1cm/秒,设P、Q移动时间为t(0≤t≤4)
(1)过点P做PM⊥OA于M,求证:AM:AO=PM:BO=AP:AB,并求出P点的坐标(用t表示);
(2)求△OPQ面积S(cm2),与运动时间t(秒)之间的函数关系式,当t为何值时,S有最大值?最大是多少?
(3)当t为何值时,△OPQ为直角三角形?
(4)证明无论t为何值时,△OPQ都不可能为正三角形.若点P运动速度不变改变Q的运动速度,使△OPQ为正三角形,求Q点运动的速度和此时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函数y=
kx
在第一象限内的图象分别交OA、AB于点C和点D,连结OD,若S△BOD=4,
(1)求反比例函数解析式;
(2)求C点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•咸宁)如图,在Rt△AOB中,OA=OB=3
2
,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为
2
2
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•安溪县质检)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,将△AOB沿x轴依次以点A、B、O为旋转中心从①的位置顺时针旋转,分别得②、③、…,则:
(1)旋转得到图③的直角顶点的坐标为
(12,0)
(12,0)

(2)旋转得到图⑩的直角顶点的坐标为
(36,0)
(36,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南岗区一模)如图,在Rt△AOB中,∠AOB=90°,且AO=8,BO=6,P是线段AB上一个动点,PE⊥A0于E,PF⊥B0于F.设
PE=x,矩形PFOE的面积为S
(1)求出S与x的函数关系式;
(2)当x为何值时,矩形PFOE的面积S最大?最大面积是多少?

查看答案和解析>>

同步练习册答案