精英家教网 > 初中数学 > 题目详情
20、用三种方法将一个等边三角形分成三个全等的图形.
分析:首先应找到等边三角形的中心,连接中心和各顶点可把等边三角形分为3个全等的三角形;联想到可从等边三角形的中心向对边引垂线可把等边三角形分成三个全等的四边形;那么把中心和前两个分法中得到的三条直线继续旋转与等边三角形的三条边相交,可得另一种分法.
解答:解:
点评:解决本题的关键是理解把三角形分为三个全等的图形不只是分为3个三角形;难点是利用类比的方法得到只要过等边三角形的中心,把中心所在位置的周角三等分的直线可把等边三角形分为三个全等的图形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)“三等分角”是数学史上一个著名问题,但数学家已经证明,仅用尺规不可能“三等分任意角”.但对于特定度数的已知角,如90°角、45°角等,是可以用尺规进行三等分的.如图a,∠AOB=90°,我们在边OB上取一点C,用尺规以OC为一边向∠AOB内部作等边△OCD,作射线OD,再用尺规作出∠DOB的角平分线OE,则射线OD、OE将∠AOB三等分.仔细体会一下其中的道理,然后用尺规把图b中的∠MON三等分(已知∠MON=45°).(不需写作法,但需保留作图痕迹,允许适当添加文字的说明)
精英家教网
(2)数学家帕普斯借助函数给出了一种“三等分锐角”的方法(如图c):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=
1
x
的图象交于点P,以P为圆心、2OP长为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=
1
3
∠AOB.要明白帕普斯的方法,请研究以下问题:
①设P(a,
1
a
)、R(b,
1
b
),求直线OM对应的函数关系式(用含a、b的代数式表示).
②分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=
1
3
∠AOB.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2014浙教版八年级上册(专题训练 状元笔记)数学:第1章 三角形的初步认识 浙教版 题型:013

用三种方法将一个等边三角形分成三个全等的图形.

查看答案和解析>>

科目:初中数学 来源:2010年江苏省无锡市江南中学中考数学二模试卷(解析版) 题型:解答题

(1)“三等分角”是数学史上一个著名问题,但数学家已经证明,仅用尺规不可能“三等分任意角”.但对于特定度数的已知角,如90°角、45°角等,是可以用尺规进行三等分的.如图a,∠AOB=90°,我们在边OB上取一点C,用尺规以OC为一边向∠AOB内部作等边△OCD,作射线OD,再用尺规作出∠DOB的角平分线OE,则射线OD、OE将∠AOB三等分.仔细体会一下其中的道理,然后用尺规把图b中的∠MON三等分(已知∠MON=45°).(不需写作法,但需保留作图痕迹,允许适当添加文字的说明)

(2)数学家帕普斯借助函数给出了一种“三等分锐角”的方法(如图c):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=的图象交于点P,以P为圆心、2OP长为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:
①设P(a,)、R(b,),求直线OM对应的函数关系式(用含a、b的代数式表示).
②分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省无锡市育才中学中考数学二模试卷(解析版) 题型:解答题

(1)“三等分角”是数学史上一个著名问题,但数学家已经证明,仅用尺规不可能“三等分任意角”.但对于特定度数的已知角,如90°角、45°角等,是可以用尺规进行三等分的.如图a,∠AOB=90°,我们在边OB上取一点C,用尺规以OC为一边向∠AOB内部作等边△OCD,作射线OD,再用尺规作出∠DOB的角平分线OE,则射线OD、OE将∠AOB三等分.仔细体会一下其中的道理,然后用尺规把图b中的∠MON三等分(已知∠MON=45°).(不需写作法,但需保留作图痕迹,允许适当添加文字的说明)

(2)数学家帕普斯借助函数给出了一种“三等分锐角”的方法(如图c):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数y=的图象交于点P,以P为圆心、2OP长为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:
①设P(a,)、R(b,),求直线OM对应的函数关系式(用含a、b的代数式表示).
②分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB.

查看答案和解析>>

同步练习册答案