精英家教网 > 初中数学 > 题目详情

作业宝如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H,
(1)求∠ACB的度数;
(2)HE=数学公式AF.

解:(1)∵AB=AC,
∴∠ACB=∠ABC,
∵∠BAC=45°,
∴∠ACB=∠ABC=(180°-∠BAC)=(180°-45°)=67.5°.
(2)连结HB,
∵AB=AC,AE平分∠BAC,
∴AE⊥BC,BE=CE,
∴∠CAE+∠C=90°,
∵BD⊥AC,
∴∠CBD+∠C=90°,
∴∠CAE=∠CBD,
∵BD⊥AC,D为垂足,
∴∠DAB+∠DBA=90°,
∵∠DAB=45°,
∴∠DBA=45°,
∴∠DBA=∠DAB,
∴DA=DB,
在Rt△BDC和Rt△ADF中,

∴Rt△BDC≌Rt△ADF (ASA),
∴BC=AF,
∵DA=DB,点G为AB的中点,
∴DG垂直平分AB,
∵点H在DG上,
∴HA=HB,
∴∠HAB=∠HBA=∠BAC=22.5°,
∴∠BHE=∠HAB+∠HBA=45°,
∴∠HBE=∠ABC-∠ABH=67.5°-22.5°=45°,
∴∠BHE=∠HBE,
∴HE=BE=BC,
∵AF=BC,
∴HE=AF.
分析:(1)根据等腰三角形性质和三角形内角和定理求出即可;
(2)证△ADF≌△BDC,推出AF=BC,求出HE=BE=CE,即可得出答案.
点评:本题考查了全等三角形的性质和判定,等腰三角形的性质,三角形内角和定理等知识点的应用,主要考查学生的推理能力,难度偏大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案